Suppr超能文献

干细胞微环境的高通量优化

High throughput optimization of stem cell microenvironments.

作者信息

Yang Fan, Mei Ying, Langer Robert, Anderson Daniel G

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Comb Chem High Throughput Screen. 2009 Jul;12(6):554-61. doi: 10.2174/138620709788681916.

Abstract

Stem cells have great potential as cell sources for regenerative medicine due to both their self-renewal and multi-lineage differentiation capacity. Despite advances in the field of stem cell biology, major challenges remain before stem cells can be widely used for therapeutic purposes. One challenge is to develop reproducible methods to control stem cell growth and differentiation. The niche in which stem cells reside is a complex, multi-factorial environment. In contrast to using cells alone, biomaterials can provide initial structural support, and allow cells to adhere, proliferate and differentiate in a three-dimensional environment. Researchers have incorporated signals into the biomaterials that can promote desired cell functions in a spatially and temporally controlled manner. Despite progress in biomaterial design and methods to modulate cellular behavior, many of the complex signal networks that regulate cell-material interactions remain unclear. Due to the vast numbers of material properties to be explored and the complexity of cell-surface interactions, it is often difficult to optimize stem cell microenvironments using conventional, iterative approaches. To address these challenges, high throughput screening of combinatorial libraries has emerged as a novel approach to achieve rapid screening with reduced materials and costs. In this review, we discuss recent research in the area of high throughput approaches for characterization and optimization of cellular interactions with their microenvironments. In contrast to conventional approaches, screening combinatorial libraries can result in the discovery of unexpected material solutions to these complex problems.

摘要

由于干细胞具有自我更新和多谱系分化能力,它们作为再生医学的细胞来源具有巨大潜力。尽管干细胞生物学领域取得了进展,但在干细胞能够广泛用于治疗目的之前,仍然存在重大挑战。其中一个挑战是开发可重复的方法来控制干细胞的生长和分化。干细胞所处的微环境是一个复杂的、多因素的环境。与单独使用细胞相比,生物材料可以提供初始的结构支持,并允许细胞在三维环境中黏附、增殖和分化。研究人员已将信号整合到生物材料中,这些信号能够以空间和时间可控的方式促进所需的细胞功能。尽管在生物材料设计和调节细胞行为的方法方面取得了进展,但许多调节细胞与材料相互作用的复杂信号网络仍不清楚。由于需要探索的材料特性众多,以及细胞表面相互作用的复杂性,使用传统的迭代方法往往难以优化干细胞微环境。为应对这些挑战,组合文库的高通量筛选已成为一种新方法,可实现用更少的材料和成本进行快速筛选。在本综述中,我们讨论了高通量方法在表征和优化细胞与其微环境相互作用领域的最新研究。与传统方法相比,筛选组合文库可能会发现解决这些复杂问题的意外材料解决方案。

相似文献

1
High throughput optimization of stem cell microenvironments.
Comb Chem High Throughput Screen. 2009 Jul;12(6):554-61. doi: 10.2174/138620709788681916.
2
The development of high-throughput screening approaches for stem cell engineering.
Curr Opin Chem Biol. 2007 Aug;11(4):388-93. doi: 10.1016/j.cbpa.2007.07.006. Epub 2007 Aug 16.
3
Bioinspired materials for controlling stem cell fate.
Acc Chem Res. 2010 Mar 16;43(3):419-28. doi: 10.1021/ar900226q.
4
Stem cells and combinatorial science.
Comb Chem High Throughput Screen. 2007 Sep;10(8):635-51. doi: 10.2174/138620707782507322.
5
Constructing stem cell microenvironments using bioengineering approaches.
Physiol Genomics. 2013 Dec 1;45(23):1123-35. doi: 10.1152/physiolgenomics.00099.2013. Epub 2013 Sep 24.
6
Biomaterials for high-throughput stem cell culture.
Curr Stem Cell Res Ther. 2010 Sep;5(3):261-7. doi: 10.2174/157488810791824557.
7
High-throughput approaches for screening and analysis of cell behaviors.
Biomaterials. 2018 Jan;153:85-101. doi: 10.1016/j.biomaterials.2017.06.022. Epub 2017 Jun 21.
8
Stem cell-based tissue engineering approaches for musculoskeletal regeneration.
Curr Pharm Des. 2013;19(19):3429-45. doi: 10.2174/13816128113199990350.
9
Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering.
Acta Biomater. 2016 Apr 1;34:133-142. doi: 10.1016/j.actbio.2016.02.015. Epub 2016 Feb 11.

引用本文的文献

1
2
Silk Hydrogel Substrate Stress Relaxation Primes Mesenchymal Stem Cell Behavior in 2D.
ACS Appl Mater Interfaces. 2021 Jul 7;13(26):30420-30433. doi: 10.1021/acsami.1c09071. Epub 2021 Jun 25.
3
Automation and data-driven design of polymer therapeutics.
Adv Drug Deliv Rev. 2021 Apr;171:1-28. doi: 10.1016/j.addr.2020.11.009. Epub 2020 Nov 24.
4
Miniaturized high-throughput synthesis and screening of responsive hydrogels using nanoliter compartments.
Mater Today Bio. 2020 Apr 18;6:100053. doi: 10.1016/j.mtbio.2020.100053. eCollection 2020 Mar.
5
Sequence-Defined Oligomers from Hydroxyproline Building Blocks for Parallel Synthesis Applications.
Angew Chem Int Ed Engl. 2016 Aug 8;55(33):9529-33. doi: 10.1002/anie.201602748. Epub 2016 Jul 1.
6
Polymer microarray technology for stem cell engineering.
Acta Biomater. 2016 Apr 1;34:60-72. doi: 10.1016/j.actbio.2015.10.030. Epub 2015 Oct 20.
7
Concise review: tailoring bioengineered scaffolds for stem cell applications in tissue engineering and regenerative medicine.
Stem Cells Transl Med. 2015 Feb;4(2):156-64. doi: 10.5966/sctm.2014-0203. Epub 2015 Jan 9.
8
Microarrayed Materials for Stem Cells.
Mater Today (Kidlington). 2012 Oct 1;15(10). doi: 10.1016/S1369-7021(12)70196-7.
9
Mesenchymal stem cell mechanobiology and emerging experimental platforms.
J R Soc Interface. 2013 May 1;10(84):20130179. doi: 10.1098/rsif.2013.0179. Print 2013 Jul 6.
10
Engineering the human pluripotent stem cell microenvironment to direct cell fate.
Biotechnol Adv. 2013 Nov 15;31(7):1002-19. doi: 10.1016/j.biotechadv.2013.03.002. Epub 2013 Mar 17.

本文引用的文献

1
Fabrication of combinatorial polymer scaffold libraries.
Rev Sci Instrum. 2007 Jul;78(7):072207. doi: 10.1063/1.2755761.
3
High-throughput screening using siRNA (RNAi) libraries.
Expert Rev Mol Diagn. 2007 May;7(3):281-91. doi: 10.1586/14737159.7.3.281.
4
Cell patterning chip for controlling the stem cell microenvironment.
Biomaterials. 2007 Jul;28(21):3208-16. doi: 10.1016/j.biomaterials.2007.03.023. Epub 2007 Mar 27.
5
Nanoparticulate delivery of suicide DNA to murine prostate and prostate tumors.
Prostate. 2007 Jun 1;67(8):855-62. doi: 10.1002/pros.20576.
6
Rapid optimization of gene delivery by parallel end-modification of poly(beta-amino ester)s.
Mol Ther. 2007 Jul;15(7):1306-12. doi: 10.1038/mt.sj.6300132. Epub 2007 Mar 20.
7
Engineering the stem cell microenvironment.
Biotechnol Prog. 2007 Jan-Feb;23(1):18-23. doi: 10.1021/bp060350a.
8
Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation.
Pharm Res. 2007 Feb;24(2):258-64. doi: 10.1007/s11095-006-9173-4. Epub 2006 Dec 27.
9
Cell instructive polymers.
Adv Biochem Eng Biotechnol. 2006;102:113-37. doi: 10.1007/b137207.
10
Combinatorial protein display for the cell-based screening of biomaterials that direct neural stem cell differentiation.
Biomaterials. 2007 Feb;28(6):1048-60. doi: 10.1016/j.biomaterials.2006.10.004. Epub 2006 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验