迈入组学时代:生物材料科学与工程面临的机遇与挑战。

Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering.

作者信息

Groen Nathalie, Guvendiren Murat, Rabitz Herschel, Welsh William J, Kohn Joachim, de Boer Jan

机构信息

Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.

New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ, USA.

出版信息

Acta Biomater. 2016 Apr 1;34:133-142. doi: 10.1016/j.actbio.2016.02.015. Epub 2016 Feb 11.

Abstract

UNLABELLED

The research paradigm in biomaterials science and engineering is evolving from using low-throughput and iterative experimental designs towards high-throughput experimental designs for materials optimization and the evaluation of materials properties. Computational science plays an important role in this transition. With the emergence of the omics approach in the biomaterials field, referred to as materiomics, high-throughput approaches hold the promise of tackling the complexity of materials and understanding correlations between material properties and their effects on complex biological systems. The intrinsic complexity of biological systems is an important factor that is often oversimplified when characterizing biological responses to materials and establishing property-activity relationships. Indeed, in vitro tests designed to predict in vivo performance of a given biomaterial are largely lacking as we are not able to capture the biological complexity of whole tissues in an in vitro model. In this opinion paper, we explain how we reached our opinion that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field.

STATEMENT OF SIGNIFICANCE

In this opinion paper, we postulate that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field.

摘要

未标注

生物材料科学与工程中的研究范式正在从使用低通量和迭代式实验设计向用于材料优化和材料性能评估的高通量实验设计演变。计算科学在这一转变中发挥着重要作用。随着生物材料领域中组学方法(即材料组学)的出现,高通量方法有望应对材料的复杂性,并理解材料性能与其对复杂生物系统影响之间的相关性。生物系统固有的复杂性是一个重要因素,在表征生物对材料的反应以及建立性质 - 活性关系时,这个因素常常被过度简化。事实上,由于我们无法在体外模型中捕捉整个组织的生物复杂性,旨在预测给定生物材料体内性能的体外测试在很大程度上是缺失的。在这篇观点论文中,我们解释了我们是如何得出将基因组学和材料组学融合到一个新领域能够显著加速新型和改进型医疗器械开发这一观点的。使用计算模型将高通量基因表达谱与高通量组合材料设计策略相关联,将增强对材料性能诱导的生物效应的分析能力。我们认为,在高通量材料实验之上增加这一层复杂性对于应对生物复杂性和进一步推动生物材料领域发展是必要的。

重要性声明

在这篇观点论文中,我们假设将基因组学和材料组学融合到一个新领域能够显著加速新型和改进型医疗器械的开发。使用计算模型将高通量基因表达谱与高通量组合材料设计策略相关联,将增强对材料性能诱导的生物效应的分析能力。我们认为,在高通量材料实验之上增加这一层复杂性对于应对生物复杂性和进一步推动生物材料领域发展是必要的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索