Gerlinger Christoph, Wessel Jens, Kallischnigg Gerd, Endrikat Jan
Global Clinical Statistics, Bayer Schering Pharma AG, Müllerstrasse 178, 13342 Berlin, Germany.
BMC Womens Health. 2009 Jul 16;9:21. doi: 10.1186/1472-6874-9-21.
The aim of this paper is to empirically identify a treatment-independent statistical method to describe clinically relevant bleeding patterns by using bleeding diaries of clinical studies on various sex hormone containing drugs.
We used the four cluster analysis methods single, average and complete linkage as well as the method of Ward for the pattern recognition in menstrual bleeding diaries. The optimal number of clusters was determined using the semi-partial R2, the cubic cluster criterion, the pseudo-F- and the pseudo-t2-statistic. Finally, the interpretability of the results from a gynecological point of view was assessed.
The method of Ward yielded distinct clusters of the bleeding diaries. The other methods successively chained the observations into one cluster. The optimal number of distinctive bleeding patterns was six. We found two desirable and four undesirable bleeding patterns. Cyclic and non cyclic bleeding patterns were well separated.
Using this cluster analysis with the method of Ward medications and devices having an impact on bleeding can be easily compared and categorized.
本文旨在通过使用各种含性激素药物的临床研究中的出血日记,实证确定一种与治疗无关的统计方法,以描述临床相关的出血模式。
我们使用了四种聚类分析方法,即单链、平均链和完全链方法以及沃德方法,对月经出血日记进行模式识别。使用半偏R2、立方聚类准则、伪F和伪t2统计量确定最佳聚类数。最后,从妇科角度评估结果的可解释性。
沃德方法产生了明显不同的出血日记聚类。其他方法则将观察结果依次链接成一个聚类。最佳的不同出血模式数量为六种。我们发现了两种理想的和四种不理想的出血模式。周期性和非周期性出血模式得到了很好的区分。
使用这种聚类分析和沃德方法,可以轻松比较和分类对出血有影响的药物和器械。