Energy Biosciences Institute, Calvin Laboratory MC 5230, UC Berkeley, Berkeley, CA 94720, USA.
Curr Opin Plant Biol. 2009 Aug;12(4):406-13. doi: 10.1016/j.pbi.2009.06.007. Epub 2009 Jul 16.
Plants have evolved sensory mechanisms to detect pathogen attack and trigger signalling pathways that induce rapid defence responses. These mechanisms include not only direct detection of pathogen-derived elicitors (e.g. pathogen-associated molecular patterns (PAMPs) and avirulence factors or effectors) but also indirect sensing of pathogens' impact on the host plant. Among the first plant barriers to pathogen ingress are the cell wall and the cuticle. For those pathogens that penetrate the plant cell wall to gain access to water and nutrients of the plant protoplast, small wounds at penetration sites are created by enzymatic or physical disruption of the plant cell wall. Thus, cell wall integrity sensing is one mechanism by which plants may detect pathogen attack. Some plant cell wall fragments, notably oligogalacturonic acids, elicit similar defence responses in plants as the non-specific PAMP elicitors (e.g. production of reactive oxygen species, elevated expression of defence-associated genes), suggesting that PAMP signalling may provide a good model for studying cell wall integrity sensing in plants. However, much remains to be discovered about this sensing mechanism.
植物已经进化出了感知机制来检测病原体的攻击,并触发信号通路,从而诱导快速的防御反应。这些机制不仅包括直接检测病原体衍生的激发子(例如病原体相关分子模式 (PAMPs) 和无毒因子或效应子),还包括间接感知病原体对宿主植物的影响。在植物抵御病原体入侵的第一道防线中,细胞壁和角质层是其中的重要组成部分。对于那些穿透植物细胞壁以获取植物原生质体水分和养分的病原体,细胞壁的酶解或物理破坏会在穿透部位造成小的伤口。因此,细胞壁完整性的感知是植物可能检测到病原体攻击的一种机制。一些植物细胞壁片段,特别是低聚半乳糖醛酸,会在植物中引发类似于非特异性 PAMP 激发子的防御反应(例如产生活性氧、防御相关基因的表达升高),这表明 PAMP 信号可能为研究植物细胞壁完整性感知提供了一个很好的模型。然而,关于这种感知机制还有很多需要发现的地方。