Suppr超能文献

未受扰和噪声广义布尔网络的动力学。

Dynamics of unperturbed and noisy generalized Boolean networks.

机构信息

Information Systems Department Faculty of Business and Economics, University of Lausanne, Switzerland.

出版信息

J Theor Biol. 2009 Oct 21;260(4):531-44. doi: 10.1016/j.jtbi.2009.06.027. Epub 2009 Jul 17.

Abstract

For years, we have been building models of gene regulatory networks, where recent advances in molecular biology shed some light on new structural and dynamical properties of such highly complex systems. In this work, we propose a novel timing of updates in random and scale-free Boolean networks, inspired by recent findings in molecular biology. This update sequence is neither fully synchronous nor asynchronous, but rather takes into account the sequence in which genes affect each other. We have used both Kauffman's original model and Aldana's extension, which takes into account the structural properties about known parts of actual GRNs, where the degree distribution is right-skewed and long-tailed. The computer simulations of the dynamics of the new model compare favorably to the original ones and show biologically plausible results both in terms of attractors number and length. We have complemented this study with a complete analysis of our systems' stability under transient perturbations, which is one of biological networks defining attribute. Results are encouraging, as our model shows comparable and usually even better behavior than preceding ones without loosing Boolean networks attractive simplicity.

摘要

多年来,我们一直在构建基因调控网络的模型,分子生物学的最新进展揭示了这些高度复杂系统的新结构和动力学特性。在这项工作中,我们受到分子生物学的最新发现的启发,提出了一种随机无标度布尔网络更新的新时间。这种更新序列既不是完全同步的,也不是异步的,而是考虑了基因相互影响的顺序。我们使用了 Kauffman 的原始模型和 Aldana 的扩展模型,该模型考虑了实际 GRNs 的已知部分的结构特性,其中度分布是右偏的和长尾的。新模型的动力学计算机模拟与原始模型相比表现良好,并在吸引子数量和长度方面显示出具有生物学意义的结果。我们通过对我们系统在瞬态扰动下的稳定性进行全面分析来补充这项研究,这是生物网络的一个定义属性。结果令人鼓舞,因为我们的模型表现出可比的,通常甚至更好的行为,而没有失去布尔网络的吸引力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验