Suppr超能文献

基因调控网络模块的布尔模型中的加性函数。

Additive functions in boolean models of gene regulatory network modules.

机构信息

Computational Genetics Laboratory, Dartmouth Medical School, Lebanon, New Hampshire, United States of America.

出版信息

PLoS One. 2011;6(11):e25110. doi: 10.1371/journal.pone.0025110. Epub 2011 Nov 21.

Abstract

Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity and solution space, thus making it easier to investigate.

摘要

基因对基因的调控是每个生物的关键组成部分。遗传调控网络的动态抽象模型有助于解释基因组的可进化性和鲁棒性。这些特性可以归因于由基因作为顶点和调节相互作用作为边缘形成的图形的结构拓扑。此外,每个基因的实际基因相互作用被认为在结构的稳定性中起着关键作用。随着生物学的进步,人们努力开发包括最新知识的布尔模型中的更新功能。我们将真实的基因相互作用网络与布尔模型中的新更新功能结合起来。我们使用两个生物组织的子网络,酵母细胞周期和小鼠胚胎干细胞,作为我们系统的拓扑支持。在这些结构上,我们用一种新的基于阈值的动态函数替代原始的随机更新函数,其中考虑了每个相互作用的促进和抑制效应。我们使用第三个真实的调控网络及其推断的布尔更新函数来验证所提出的更新函数。这种验证的结果暗示了基于阈值的函数具有更高的生物学合理性。为了研究这个新模型的动力学行为,我们使用 Derrida 图将秩序和混沌之间的相变可视化到临界状态。我们用另一种替代度量——临界距离,来补充 Derrida 图的定性性质,这也允许以定量的方式区分不同的状态。对两个真实的遗传调控网络的模拟表明,存在一组参数允许系统在临界区域中运行。这个新模型包括实验得出的生物学信息和最新的发现,这使得它有可能指导实验研究。更新功能为模型赋予了额外的现实性,同时减少了复杂性和解决方案空间,从而使研究更加容易。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e64f/3221653/2198b09ae52c/pone.0025110.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验