Edelmann Frank T
Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, D-39106, Magdeburg, Germany.
Chem Soc Rev. 2009 Aug;38(8):2253-68. doi: 10.1039/b800100f. Epub 2009 Apr 8.
For decades, the organometallic chemistry of the rare earth elements was largely dominated by the cyclopentadienyl ligand and its ring-substituted derivatives. A hot topic in current organolanthanide chemistry is the search for alternative ligand sets which are able to satisfy the coordination requirements of the large lanthanide cations. Among the most successful approaches in this field is the use of amidinate ligands of the general type RC(NR')(2) (R = H, alkyl, aryl; R' = alkyl, cycloalkyl, aryl, SiMe(3)) which can be regarded as steric cyclopentadienyl equivalents. Closely related are the guanidinate anions of the general type R(2)NC(NR')(2) (R = alkyl, SiMe(3); R' = alkyl, cycloalkyl, aryl, SiMe(3)). Two amidinate or guanidinate ligands can coordinate to a lanthanide ion to form a metallocene-like coordination environment which allows the isolation and characterization of stable though very reactive amide, alkyl, and hydride species. Mono- and trisubstituted lanthanide amidinate and guanidinate complexes are also readily available. Various rare earth amidinates and guanidinates have turned out to be very efficient homogeneous catalysts e.g. for ring-opening polymerization reactions. Moreover, certain alkyl-substituted lanthanide tris(amidinates) and tris(guanidinates) were found to be highly volatile and could thus be promising precursors for ALD (= Atomic Layer Deposition) and MOCVD (= Metal-Organic Chemical Vapor Deposition) processes in materials science and nanotechnology. This tutorial review covers the success story of lanthanide amidinates and guanidinates and their transition from mere laboratory curiosities to efficient homogeneous catalysts as well as ALD and MOCVD precursors.
几十年来,稀土元素的有机金属化学在很大程度上由环戊二烯基配体及其环取代衍生物主导。当前有机镧系化学中的一个热门话题是寻找能够满足大尺寸镧系阳离子配位需求的替代配体组。该领域最成功的方法之一是使用通式为RC(NR')(2)(R = H、烷基、芳基;R' = 烷基、环烷基、芳基、SiMe(3))的脒基配体,其可被视为空间位阻上等同于环戊二烯基的配体。与之密切相关的是通式为R(2)NC(NR')(2)(R = 烷基、SiMe(3);R' = 烷基、环烷基、芳基、SiMe(3))的胍基阴离子。两个脒基或胍基配体可与镧系离子配位,形成类似茂金属的配位环境,这使得稳定但反应性很强的酰胺、烷基和氢化物物种得以分离和表征。单取代和三取代的镧系脒基和胍基配合物也很容易获得。各种稀土脒基和胍基已被证明是非常有效的均相催化剂,例如用于开环聚合反应。此外,发现某些烷基取代的镧系三(脒基)和三(胍基)具有高挥发性,因此可能是材料科学和纳米技术中原子层沉积(ALD)和金属有机化学气相沉积(MOCVD)工艺的有前途的前驱体。本教程综述涵盖了镧系脒基和胍基的成功故事,以及它们从单纯的实验室新奇事物向高效均相催化剂以及ALD和MOCVD前驱体的转变。