Suppr超能文献

锁相和环境波动在捕食者 - 猎物群落中产生同步性。

Phase-locking and environmental fluctuations generate synchrony in a predator-prey community.

作者信息

Vasseur David A, Fox Jeremy W

机构信息

Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520, USA.

出版信息

Nature. 2009 Aug 20;460(7258):1007-10. doi: 10.1038/nature08208. Epub 2009 Jul 22.

Abstract

Spatially synchronized fluctuations in system state are common in physical and biological systems ranging from individual atoms to species as diverse as viruses, insects and mammals. Although the causal factors are well known for many synchronized phenomena, several processes concurrently have an impact on spatial synchrony of species, making their separate effects and interactions difficult to quantify. Here we develop a general stochastic model of predator-prey spatial dynamics to predict the outcome of a laboratory microcosm experiment testing for interactions among all known synchronizing factors: (1) dispersal of individuals between populations; (2) spatially synchronous fluctuations in exogenous environmental factors (the Moran effect); and (3) interactions with other species (for example, predators) that are themselves spatially synchronized. The Moran effect synchronized populations of the ciliate protist Tetrahymena pyriformis; however, dispersal only synchronized prey populations in the presence of the predator Euplotes patella. Both model and data indicate that synchrony depends on cyclic dynamics generated by the predator. Dispersal, but not the Moran effect, 'phase-locks' cycles, which otherwise become 'decoherent' and drift out of phase. In the absence of cycles, phase-locking is not possible and the synchronizing effect of dispersal is negligible. Interspecific interactions determine population synchrony, not by providing an additional source of synchronized fluctuations, but by altering population dynamics and thereby enhancing the action of dispersal. Our results are robust to wide variation in model parameters representative of many natural predator-prey or host-pathogen systems. This explains why cyclic systems provide many of the most dramatic examples of spatial synchrony in nature.

摘要

从单个原子到病毒、昆虫和哺乳动物等各种生物,系统状态在空间上的同步波动在物理和生物系统中很常见。虽然许多同步现象的因果因素已为人熟知,但有几个过程同时对物种的空间同步产生影响,使得它们各自的影响和相互作用难以量化。在此,我们开发了一个捕食者 - 猎物空间动态的通用随机模型,以预测一项实验室微观实验的结果,该实验测试了所有已知同步因素之间的相互作用:(1)个体在种群间的扩散;(2)外源环境因素的空间同步波动(莫兰效应);以及(3)与自身在空间上同步的其他物种(例如捕食者)的相互作用。莫兰效应使梨形四膜虫这种纤毛原生生物的种群同步;然而,只有在存在捕食者小栉毛虫的情况下,扩散才使猎物种群同步。模型和数据均表明同步取决于捕食者产生的周期性动态。扩散而非莫兰效应使周期“锁相”,否则周期会变得“去相干”并失相漂移。在没有周期的情况下,锁相是不可能的,扩散的同步效应可忽略不计。种间相互作用决定种群同步,并非通过提供额外的同步波动源,而是通过改变种群动态,从而增强扩散的作用。我们的结果对于代表许多自然捕食者 - 猎物或宿主 - 病原体系统的模型参数的广泛变化具有稳健性。这解释了为什么周期性系统提供了自然界中许多最显著的空间同步例子。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验