Grollman E F, Lee G, Ambesi-Impiombato F S, Meldolesi M F, Aloj S M, Coon H G, Kaback H R, Kohn L D
Proc Natl Acad Sci U S A. 1977 Jun;74(6):2352-6. doi: 10.1073/pnas.74.6.2352.
Cultured thyroid cells accumulate the lipophilic cation triphenylmethylphosphonium, indicating that there is an electrical potential (interior negative) across the plasma membrane. Thyrotropin stimulates the uptake of the lipophilic cation 3-fold, and the proton conductor carbonylcyanide-m-chlorophenylhydrazone causes efflux of triphenylmethylphosphonium accumulated in the presence or absence of thyrotropin. The stimulatory effect of thyrotropin on triphenylmethylphosphonium accumulation is not mimicked by human chorionic gonadotropin, a glycoprotein hormone with a similar structure whose target organ is not the thyroid, and the effect is abolished if the thyrotropin-receptor activity of the cells is destroyed by treatment with trypsin. Analogous effects are observed with thyroid plasma membrane vesicles which are essentially devoid of mitochondrial and soluble enzyme activities. Triphenylmethylphosphonium uptake and stimulation by thyrotropin occurs when NaCl, KCl, or Tris.HCl concentration gradients are artifically imposed across the vesicle membrane (salt > salt). It seems likely, therefore, that triphenylmethylphosphonium uptake is driven by a chloride diffusion potential (interior negative) and that thyrotropin either increases the permeability of the membrane to anions or decreases its permeability to cations. Thyrotropin-stimulated triphenylmethylphosphonium uptake in the vesicle preparations reaches a quasi steady-state within 3 min; in contrast, thyrotropin-stimulated adenylate cyclase activity is negligible during this period of time, becomes measurable after about 4 min, and is optimal after 12-15 min. Thus, a primary mode of action of thyrotropin on the thyroid cell may be an alteration in the electrical potential across the plasma membrane. The relevance of this observation to the mechanism of action of other glycoprotein hormones, certain bacterial toxins, and interferon is discussed.
培养的甲状腺细胞会积累亲脂性阳离子三苯基甲基鏻,这表明质膜两侧存在电势(内部为负)。促甲状腺激素能使亲脂性阳离子的摄取增加3倍,质子传导剂羰基氰化物-间氯苯腙会导致在有或无促甲状腺激素存在时积累的三苯基甲基鏻外流。人绒毛膜促性腺激素是一种结构相似但靶器官不是甲状腺的糖蛋白激素,它不会模拟促甲状腺激素对三苯基甲基鏻积累的刺激作用,并且如果用胰蛋白酶处理破坏细胞的促甲状腺激素受体活性,这种作用就会消失。在基本没有线粒体和可溶性酶活性的甲状腺质膜囊泡中也观察到了类似的效应。当人工在囊泡膜上施加NaCl、KCl或Tris·HCl浓度梯度(盐>盐)时,会发生三苯基甲基鏻的摄取以及促甲状腺激素的刺激作用。因此,三苯基甲基鏻的摄取似乎是由氯离子扩散电位(内部为负)驱动的,促甲状腺激素要么增加膜对阴离子的通透性,要么降低其对阳离子的通透性。在囊泡制剂中,促甲状腺激素刺激的三苯基甲基鏻摄取在3分钟内达到准稳态;相比之下,在此时间段内促甲状腺激素刺激的腺苷酸环化酶活性可忽略不计,约4分钟后开始可测,12 - 15分钟后达到最佳状态。因此,促甲状腺激素对甲状腺细胞的主要作用方式可能是改变质膜两侧的电势。本文还讨论了这一观察结果与其他糖蛋白激素、某些细菌毒素和干扰素作用机制的相关性。