Suppr超能文献

肺部密度的定量磁共振成像测量必须考虑到随着肺部膨胀T(2)*的变化。

Quantitative MRI measurement of lung density must account for the change in T(2) (*) with lung inflation.

作者信息

Theilmann Rebecca J, Arai Tatsuya J, Samiee Ahsan, Dubowitz David J, Hopkins Susan R, Buxton Richard B, Prisk G Kim

机构信息

Department of Radiology, University of California, San Diego, La Jolla, California, USA.

出版信息

J Magn Reson Imaging. 2009 Sep;30(3):527-34. doi: 10.1002/jmri.21866.

Abstract

PURPOSE

To evaluate lung water density at three different levels of lung inflation in normal lungs using a fast gradient echo sequence developed for rapid imaging.

MATERIALS AND METHODS

Ten healthy volunteers were imaged with a fast gradient echo sequence that collects 12 images alternating between two closely spaced echoes in a single 9-s breathhold. Data were fit to a single exponential to determine lung water density and T(2) (). Data were evaluated in a single imaging slice at total lung capacity (TLC), functional residual capacity (FRC), and residual volume (RV). Analysis of variance for repeated measures was used to statistically evaluate changes in T(2) () and lung water density across lung volumes, imaging plane, and spatial locations in the lung.

RESULTS

In normal subjects (n = 10), T(2) () (and [lung density/water density]) was 1.2 +/- 0.1 msec (0.10 +/- 0.02), 1.8 +/- 0.2 ms (0.25 +/- 0.04), and 2.0 +/- 0.2 msec (0.27 +/- 0.03) at TLC, FRC, and RV, respectively. Results also show that there is a considerable intersubject variability in the values of T(2) ().

CONCLUSION

Data show that T(2) () in the lung is very short, and varies considerably with lung volume. Thus, if quantitative assessment of lung density within a breathhold is to be measured accurately, then it is necessary to also determine T(2) ().

摘要

目的

使用为快速成像开发的快速梯度回波序列,评估正常肺在三种不同肺膨胀水平下的肺水密度。

材料与方法

10名健康志愿者采用快速梯度回波序列成像,该序列在单次9秒屏气过程中,在两个紧密间隔的回波之间交替采集12幅图像。数据拟合为单指数曲线以确定肺水密度和T(2)*。在全肺容量(TLC)、功能残气量(FRC)和残气量(RV)下的单个成像层面评估数据。采用重复测量方差分析对T(2)*和肺水密度在肺容积、成像平面和肺内空间位置的变化进行统计学评估。

结果

在正常受试者(n = 10)中,TLC、FRC和RV时的T(2)*(以及[肺密度/水密度])分别为1.2±0.1毫秒(0.10±0.02)、1.8±0.2毫秒(0.25±0.04)和2.0±0.2毫秒(0.27±0.03)。结果还显示,T(2)*值在受试者之间存在相当大的变异性。

结论

数据表明,肺内的T(2)非常短,且随肺容积有很大变化。因此,如果要在屏气期间准确测量肺密度的定量评估,那么还需要确定T(2)

相似文献

1
2
Estimation of the absolute shear stiffness of human lung parenchyma using (1) H spin echo, echo planar MR elastography.
J Magn Reson Imaging. 2014 Nov;40(5):1230-7. doi: 10.1002/jmri.24479. Epub 2013 Nov 13.
3
Spirometry, Static Lung Volumes, and Diffusing Capacity.
Respir Care. 2017 Sep;62(9):1137-1147. doi: 10.4187/respcare.05515. Epub 2017 Jul 11.
4
Diaphragm and chest wall: assessment of the inspiratory pump with MR imaging-preliminary observations.
Radiology. 2000 May;215(2):574-83. doi: 10.1148/radiology.215.2.r00ma28574.
5
In vivo imaging of the spectral line broadening of the human lung in a single breathhold.
J Magn Reson Imaging. 2016 Sep;44(3):745-57. doi: 10.1002/jmri.25192. Epub 2016 Feb 26.
8
Marked pericardial inhomogeneity of specific ventilation at total lung capacity and beyond.
Respir Physiol Neurobiol. 2009 Oct 31;169(1):44-9. doi: 10.1016/j.resp.2009.07.024. Epub 2009 Aug 5.
9
Diagnostic role of residual volume in paediatric patients with chronic symptoms of the lower airways.
Clin Physiol. 1998 Jan;18(1):49-54. doi: 10.1046/j.1365-2281.1998.00072.x.
10
Measuring lung water: ex vivo validation of multi-image gradient echo MRI.
J Magn Reson Imaging. 2011 Jul;34(1):220-4. doi: 10.1002/jmri.22600.

引用本文的文献

1
MRI Assessment of Lung Water Density in Individuals Previously Infected With COVID-19: A Cross-Sectional Study.
J Magn Reson Imaging. 2025 Sep;62(3):767-778. doi: 10.1002/jmri.29814. Epub 2025 May 8.
2
Vaping causes an acute BMI-dependent change in pulmonary blood flow.
Physiol Rep. 2024 Oct;12(20):e70094. doi: 10.14814/phy2.70094.
4
Assessing the pulmonary vascular responsiveness to oxygen with proton MRI.
J Appl Physiol (1985). 2024 Apr 1;136(4):853-863. doi: 10.1152/japplphysiol.00747.2023. Epub 2024 Feb 22.
6
Lung T * mapping using 3D ultrashort TE with tight intervals δTE.
Magn Reson Med. 2023 Nov;90(5):2001-2010. doi: 10.1002/mrm.29756. Epub 2023 Jun 8.
7
The spatial-temporal dynamics of pulmonary blood flow are altered in pulmonary arterial hypertension.
J Appl Physiol (1985). 2023 Apr 1;134(4):969-979. doi: 10.1152/japplphysiol.00463.2022. Epub 2023 Mar 2.

本文引用的文献

1
Pulmonary perfusion in the prone and supine postures in the normal human lung.
J Appl Physiol (1985). 2007 Sep;103(3):883-94. doi: 10.1152/japplphysiol.00292.2007. Epub 2007 Jun 14.
2
Vertical gradients in regional lung density and perfusion in the supine human lung: the Slinky effect.
J Appl Physiol (1985). 2007 Jul;103(1):240-8. doi: 10.1152/japplphysiol.01289.2006. Epub 2007 Mar 29.
4
Steep head-down tilt has persisting effects on the distribution of pulmonary blood flow.
J Appl Physiol (1985). 2006 Aug;101(2):583-9. doi: 10.1152/japplphysiol.00087.2006. Epub 2006 Apr 6.
7
Magnetic resonance T2* measurements of the normal human lung in vivo with ultra-short echo times.
Magn Reson Imaging. 1999 Sep;17(7):997-1000. doi: 10.1016/s0730-725x(99)00047-8.
9
In vitro measurements of water content and T2 relaxation times in lung using a clinical MRI scanner.
J Magn Reson Imaging. 1999 May;9(5):699-703. doi: 10.1002/(sici)1522-2586(199905)9:5<699::aid-jmri12>3.0.co;2-h.
10
The Rician distribution of noisy MRI data.
Magn Reson Med. 1995 Dec;34(6):910-4. doi: 10.1002/mrm.1910340618.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验