Suppr超能文献

基于信息论的脑电-功能磁共振视觉诱发电位整合方法。

An information theoretic approach to EEG-fMRI integration of visually evoked responses.

机构信息

Birmingham University Imaging Centre, School of Psychology, University of Birmingham, UK.

出版信息

Neuroimage. 2010 Jan 1;49(1):498-516. doi: 10.1016/j.neuroimage.2009.07.038. Epub 2009 Jul 24.

Abstract

The integration of signals from electro-encephalography (EEG) and functional magnetic resonance imaging (fMRI), acquired simultaneously from the same observer, holds great potential for the elucidation of the neurobiological underpinnings of human brain function. However, the most appropriate way in which to combine the data in order to achieve this goal is not clear. Here, we apply a novel route to the integration of simultaneously acquired multimodal brain imaging data. We adopt a theoretical framework developed in the study of neuronal population codes which explicitly takes into account the experimentally observed stimulus-response signal probability distributions using the concept of mutual information. We study the implications of this framework using simulated data sets generated from a set of linear Gaussian models, and apply the framework to EEG-fMRI data acquired during checkerboard stimulation of low and high contrast. We focus our evaluation on single-trial time-domain signal features from both modalities and provide evidence for the informativeness of a subset of these features with respect to the stimulus and each other. Specifically, the framework was able to identify the contrast dependency of the haemodynamic response and the P100 peak of the visual evoked potential, and showed that combining EEG and fMRI time-domain features by quantifying the information in their joint distribution was more informative than treating each one in isolation. In addition, the effect of different pre-processing strategies for EEG-fMRI data can be assessed quantitatively, indicating the improvements to be gained by more advanced methods. We conclude that the information theoretic framework is a promising methodology to quantify the relative importance of different response features in neural coding and neurovascular coupling, as well as the success of data pre-processing strategies.

摘要

同时从同一观察者获取的脑电图 (EEG) 和功能磁共振成像 (fMRI) 的信号融合,为阐明人类大脑功能的神经生物学基础提供了巨大的潜力。然而,为了实现这一目标,最适合的整合数据的方法尚不清楚。在这里,我们应用一种新的方法来整合同时获取的多模态脑成像数据。我们采用了一种在神经元群体编码研究中开发的理论框架,该框架明确考虑了使用互信息概念来考虑实验观察到的刺激-反应信号概率分布。我们使用一组线性高斯模型生成的模拟数据集来研究该框架的含义,并将该框架应用于低对比度和高对比度棋盘刺激期间获取的 EEG-fMRI 数据。我们专注于两种模态的单试时域信号特征的评估,并提供了这些特征中与刺激和彼此相关的子集的信息量的证据。具体来说,该框架能够识别血流动力学反应和视觉诱发电位 P100 峰值的对比度依赖性,并表明通过量化其联合分布中的信息来组合 EEG 和 fMRI 时域特征比单独处理每个特征更具信息量。此外,可以定量评估 EEG-fMRI 数据的不同预处理策略的效果,表明更先进的方法可以带来改进。我们得出结论,信息论框架是一种很有前途的方法,可以量化神经编码和神经血管耦合中不同反应特征的相对重要性,以及数据预处理策略的成功程度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验