Daunizeau Jean, Grova Christophe, Marrelec Guillaume, Mattout Jérémie, Jbabdi Saad, Pélégrini-Issac Mélanie, Lina Jean-Marc, Benali Habib
Wellcome Department of Imaging Neuroscience, London, UK; INSERM U678, Paris F-75013, France.
Neuroimage. 2007 May 15;36(1):69-87. doi: 10.1016/j.neuroimage.2007.01.044. Epub 2007 Feb 15.
In this work, we propose a symmetrical multimodal EEG/fMRI information fusion approach dedicated to the identification of event-related bioelectric and hemodynamic responses. Unlike existing, asymmetrical EEG/fMRI data fusion algorithms, we build a joint EEG/fMRI generative model that explicitly accounts for local coupling/uncoupling of bioelectric and hemodynamic activities, which are supposed to share a common substrate. Under a dedicated assumption of spatio-temporal separability, the spatial profile of the common EEG/fMRI sources is introduced as an unknown hierarchical prior on both markers of cerebral activity. Thereby, a devoted Variational Bayesian (VB) learning scheme is derived to infer common EEG/fMRI sources from a joint EEG/fMRI dataset. This yields an estimate of the common spatial profile, which is built as a trade-off between information extracted from EEG and fMRI datasets. Furthermore, the spatial structure of the EEG/fMRI coupling/uncoupling is learned exclusively from the data. The proposed data generative model and devoted VBEM learning scheme thus provide an un-supervised well-balanced approach for the fusion of EEG/fMRI information. We first demonstrate our approach on synthetic data. Results show that, in contrast to classical EEG/fMRI fusion approach, the method proved efficient and robust regardless of the EEG/fMRI discordance level. We apply the method on EEG/fMRI recordings from a patient with epilepsy, in order to identify brain areas involved during the generation of epileptic spikes. The results are validated using intracranial EEG measurements.
在这项工作中,我们提出了一种对称多模态脑电图/功能磁共振成像信息融合方法,专门用于识别事件相关的生物电和血液动力学反应。与现有的非对称脑电图/功能磁共振成像数据融合算法不同,我们构建了一个联合脑电图/功能磁共振成像生成模型,该模型明确考虑了生物电和血液动力学活动的局部耦合/解耦,它们被认为共享一个共同的基质。在时空可分离性的专门假设下,共同脑电图/功能磁共振成像源的空间分布被引入作为脑活动两个标记上的未知层次先验。由此,推导了一种专门的变分贝叶斯(VB)学习方案,以从联合脑电图/功能磁共振成像数据集中推断共同的脑电图/功能磁共振成像源。这产生了对共同空间分布的估计,它是从脑电图和功能磁共振成像数据集中提取的信息之间的权衡。此外,脑电图/功能磁共振成像耦合/解耦的空间结构完全从数据中学习。所提出的数据生成模型和专门的VBEM学习方案因此为脑电图/功能磁共振成像信息融合提供了一种无监督的平衡方法。我们首先在合成数据上演示我们的方法。结果表明,与经典的脑电图/功能磁共振成像融合方法相比,该方法无论脑电图/功能磁共振成像不一致水平如何都被证明是有效和稳健的。我们将该方法应用于一名癫痫患者的脑电图/功能磁共振成像记录,以识别癫痫发作期间涉及的脑区。结果使用颅内脑电图测量进行了验证。