Alfaro Michael E, Santini Francesco, Brock Chad, Alamillo Hugo, Dornburg Alex, Rabosky Daniel L, Carnevale Giorgio, Harmon Luke J
Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.
Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13410-4. doi: 10.1073/pnas.0811087106. Epub 2009 Jul 24.
The uneven distribution of species richness is a fundamental and unexplained pattern of vertebrate biodiversity. Although species richness in groups like mammals, birds, or teleost fishes is often attributed to accelerated cladogenesis, we lack a quantitative conceptual framework for identifying and comparing the exceptional changes of tempo in vertebrate evolutionary history. We develop MEDUSA, a stepwise approach based upon the Akaike information criterion for detecting multiple shifts in birth and death rates on an incompletely resolved phylogeny. We apply MEDUSA incompletely to a diversity tree summarizing both evolutionary relationships and species richness of 44 major clades of jawed vertebrates. We identify 9 major changes in the tempo of gnathostome diversification; the most significant of these lies at the base of a clade that includes most of the coral-reef associated fishes as well as cichlids and perches. Rate increases also underlie several well recognized tetrapod radiations, including most modern birds, lizards and snakes, ostariophysan fishes, and most eutherian mammals. In addition, we find that large sections of the vertebrate tree exhibit nearly equal rates of origination and extinction, providing some of the first evidence from molecular data for the importance of faunal turnover in shaping biodiversity. Together, these results reveal living vertebrate biodiversity to be the product of volatile turnover punctuated by 6 accelerations responsible for >85% of all species as well as 3 slowdowns that have produced "living fossils." In addition, by revealing the timing of the exceptional pulses of vertebrate diversification as well as the clades that experience them, our diversity tree provides a framework for evaluating particular causal hypotheses of vertebrate radiations.
物种丰富度的不均匀分布是脊椎动物生物多样性的一种基本且尚未得到解释的模式。尽管哺乳动物、鸟类或硬骨鱼类等类群的物种丰富度通常归因于加速的分支形成,但我们缺乏一个定量的概念框架来识别和比较脊椎动物进化历史中节奏的异常变化。我们开发了MEDUSA,这是一种基于赤池信息准则的逐步方法,用于在未完全解析的系统发育树上检测出生率和死亡率的多次变化。我们将MEDUSA不完全应用于一个多样性树,该树总结了有颌脊椎动物44个主要类群的进化关系和物种丰富度。我们识别出了9个颌口类动物多样化节奏的主要变化;其中最显著的变化位于一个类群的基部,该类群包括大多数与珊瑚礁相关的鱼类以及丽鱼科和鲈科鱼类。速率增加也是几个公认的四足动物辐射事件的基础,包括大多数现代鸟类、蜥蜴和蛇、骨鳔总目鱼类以及大多数真兽类哺乳动物。此外,我们发现脊椎动物树的大部分区域显示出几乎相等的起源和灭绝速率,这为动物群更替在塑造生物多样性中的重要性提供了一些来自分子数据的初步证据。这些结果共同表明,现存脊椎动物的生物多样性是由波动的更替产生的,其间穿插着6次加速事件,这些加速事件导致了超过85%的所有物种的出现,以及3次减速事件,这些减速事件产生了“活化石”。此外,通过揭示脊椎动物多样化异常脉冲的时间以及经历这些脉冲的类群,我们的多样性树为评估脊椎动物辐射的特定因果假设提供了一个框架。