Suppr超能文献

死胡同的新起点:多倍体、-SSE模型与死胡同假说。

New beginnings for dead ends: polyploidy, -SSE models and the dead-end hypothesis.

作者信息

Hagen Eric R, Beaulieu Jeremy M

机构信息

Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA.

Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.

出版信息

Ann Bot. 2024 Dec 31;134(6):923-932. doi: 10.1093/aob/mcae143.

Abstract

BACKGROUND

Since the mid-20th century, it has been argued by some that the transition from diploidy to polyploidy is an 'evolutionary dead end' in plants. Although this point has been debated ever since, multiple definitions of 'dead end' have been used in the polyploidy literature, without sufficient differentiation between alternative uses.

SCOPE

Here, we focus on the two most common conceptions of the dead-end hypothesis currently discussed: the 'lowering diversification' hypothesis and the 'rarely successful' hypothesis. We discuss the evidence for both hypotheses, and we use a recently developed method of inferring tip diversification rates to demonstrate tests for the effect of ploidy on diversification in Solanaceae.

CONCLUSIONS

We find that diversification rates in the family are not strongly correlated with ploidy or with the closely related trait of breeding system. We also outline recent work in the field that moves beyond the relatively simple question of whether polyploidy increases, decreases or does not significantly affect diversification rates in plants.

摘要

背景

自20世纪中叶以来,一些人认为植物从二倍体到多倍体的转变是一个“进化死胡同”。尽管从那时起这一观点就一直存在争议,但在多倍体文献中对“死胡同”有多种定义,且不同用法之间没有得到充分区分。

范围

在这里,我们关注当前讨论的死胡同假说的两种最常见概念:“降低多样化”假说和“极少成功”假说。我们讨论了这两种假说的证据,并使用一种最近开发的推断末端多样化速率的方法来展示对茄科中倍性对多样化影响的测试。

结论

我们发现该科的多样化速率与倍性或与密切相关的繁殖系统性状没有强烈关联。我们还概述了该领域最近的研究工作,这些工作超越了多倍体是否增加、降低或不显著影响植物多样化速率这一相对简单的问题。

相似文献

1
New beginnings for dead ends: polyploidy, -SSE models and the dead-end hypothesis.
Ann Bot. 2024 Dec 31;134(6):923-932. doi: 10.1093/aob/mcae143.
2
Interventions for preventing weight gain after smoking cessation.
Cochrane Database Syst Rev. 2012 Jan 18;1:CD006219. doi: 10.1002/14651858.CD006219.pub3.
4
Thrombolysis for acute ischaemic stroke.
Cochrane Database Syst Rev. 2003(3):CD000213. doi: 10.1002/14651858.CD000213.
5
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
6
Single-incision sling operations for urinary incontinence in women.
Cochrane Database Syst Rev. 2017 Jul 26;7(7):CD008709. doi: 10.1002/14651858.CD008709.pub3.
7
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.
Health Technol Assess. 2024 Oct;28(62):1-155. doi: 10.3310/MKRT2948.
9
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
10
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.
Clin Orthop Relat Res. 2025 Jan 1;483(1):39-48. doi: 10.1097/CORR.0000000000003161. Epub 2024 Jun 21.

本文引用的文献

1
Anatomy of a mega-radiation: Biogeography and niche evolution in Astragalus.
Am J Bot. 2024 Mar;111(3):e16299. doi: 10.1002/ajb2.16299. Epub 2024 Feb 28.
2
Genome evolution in plants and the origins of innovation.
New Phytol. 2023 Dec;240(6):2204-2209. doi: 10.1111/nph.19242. Epub 2023 Sep 2.
3
Trait-dependent diversification in angiosperms: Patterns, models and data.
Ecol Lett. 2023 Apr;26(4):640-657. doi: 10.1111/ele.14170. Epub 2023 Feb 24.
4
Polyploidy: its consequences and enabling role in plant diversification and evolution.
Ann Bot. 2023 Feb 7;131(1):1-10. doi: 10.1093/aob/mcac132.
5
A flexible method for estimating tip diversification rates across a range of speciation and extinction scenarios.
Evolution. 2022 Jul;76(7):1420-1433. doi: 10.1111/evo.14517. Epub 2022 Jun 16.
6
Retiring "Cradles" and "Museums" of Biodiversity.
Am Nat. 2022 Feb;199(2):194-205. doi: 10.1086/717412. Epub 2021 Dec 15.
7
Phylogenomic conflict coincides with rapid morphological innovation.
Proc Natl Acad Sci U S A. 2021 May 11;118(19). doi: 10.1073/pnas.2023058118.
8
Polyploidy and self-compatibility: is there an association?
New Phytol. 2004 Jun;162(3):803-811. doi: 10.1111/j.1469-8137.2004.01055.x.
9
Polyploidy on Islands: Its Emergence and Importance for Diversification.
Front Plant Sci. 2021 Mar 4;12:637214. doi: 10.3389/fpls.2021.637214. eCollection 2021.
10
Polyploids increase overall diversity despite higher turnover than diploids in the Brassicaceae.
Proc Biol Sci. 2020 Sep 9;287(1934):20200962. doi: 10.1098/rspb.2020.0962. Epub 2020 Sep 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验