Maleckar Mary M, Greenstein Joseph L, Giles Wayne R, Trayanova Natalia A
Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore,Maryland, USA.
Am J Physiol Heart Circ Physiol. 2009 Oct;297(4):H1398-410. doi: 10.1152/ajpheart.00411.2009. Epub 2009 Jul 24.
Ongoing investigation of the electrophysiology and pathophysiology of the human atria requires an accurate representation of the membrane dynamics of the human atrial myocyte. However, existing models of the human atrial myocyte action potential do not accurately reproduce experimental observations with respect to the kinetics of key repolarizing currents or rate dependence of the action potential and fail to properly enforce charge conservation, an essential characteristic in any model of the cardiac membrane. In addition, recent advances in experimental methods have resulted in new data regarding the kinetics of repolarizing currents in the human atria. The goal of this study was to develop a new model of the human atrial action potential, based on the Nygren et al. model of the human atrial myocyte and newly available experimental data, that ensures an accurate representation of repolarization processes and reproduction of action potential rate dependence and enforces charge conservation. Specifically, the transient outward K(+) current (I(t)) and ultrarapid rectifier K(+) current (I(Kur)) were newly formulated. The inwardly recitifying K(+) current (I(K1)) was also reanalyzed and implemented appropriately. Simulations of the human atrial myocyte action potential with this new model demonstrated that early repolarization is dependent on the relative conductances of I(t) and I(Kur), whereas densities of both I(Kur) and I(K1) underlie later repolarization. In addition, this model reproduces experimental measurements of rate dependence of I(t), I(Kur), and action potential duration. This new model constitutes an improved representation of excitability and repolarization reserve in the human atrial myocyte and, therefore, provides a useful computational tool for future studies involving the human atrium in both health and disease.
对人类心房电生理学和病理生理学的持续研究需要准确呈现人类心房肌细胞的膜动力学。然而,现有的人类心房肌细胞动作电位模型在关键复极电流的动力学或动作电位的频率依赖性方面未能准确再现实验观察结果,并且未能正确实现电荷守恒,而电荷守恒是任何心脏膜模型的一个基本特征。此外,实验方法的最新进展产生了关于人类心房复极电流动力学的新数据。本研究的目标是基于Nygren等人的人类心房肌细胞模型和新获得的实验数据,开发一种新的人类心房动作电位模型,该模型确保复极过程的准确呈现、动作电位频率依赖性的再现并实现电荷守恒。具体而言,新制定了瞬时外向K(+)电流(I(t))和超快速延迟整流K(+)电流(I(Kur))。还重新分析并适当实现了内向整流K(+)电流(I(K1))。用这个新模型对人类心房肌细胞动作电位进行的模拟表明,早期复极取决于I(t)和I(Kur)的相对电导,而I(Kur)和I(K1)的密度是后期复极的基础。此外,该模型再现了I(t)、I(Kur)和动作电位持续时间频率依赖性的实验测量结果。这个新模型构成了对人类心房肌细胞兴奋性和复极储备的改进表示,因此为未来涉及人类心房健康和疾病的研究提供了一个有用的计算工具。