The Wellcome Trust Centre of Neuroimaging, University College London, Queen Square, London, United Kingdom.
Neural Netw. 2009 Oct;22(8):1093-104. doi: 10.1016/j.neunet.2009.07.023. Epub 2009 Jul 19.
This paper assumes that cortical circuits have evolved to enable inference about the causes of sensory input received by the brain. This provides a principled specification of what neural circuits have to achieve. Here, we attempt to address how the brain makes inferences by casting inference as an optimisation problem. We look at how the ensuing recognition dynamics could be supported by directed connections and message-passing among neuronal populations, given our knowledge of intrinsic and extrinsic neuronal connections. We assume that the brain models the world as a dynamic system, which imposes causal structure on the sensorium. Perception is equated with the optimisation or inversion of this internal model, to explain sensory input. Given a model of how sensory data are generated, we use a generic variational approach to model inversion to furnish equations that prescribe recognition; i.e., the dynamics of neuronal activity that represents the causes of sensory input. Here, we focus on a model whose hierarchical and dynamical structure enables simulated brains to recognise and predict sequences of sensory states. We first review these models and their inversion under a variational free-energy formulation. We then show that the brain has the necessary infrastructure to implement this inversion and present stimulations using synthetic birds that generate and recognise birdsongs.
本文假设皮质电路的进化是为了能够对大脑接收到的感觉输入的原因进行推断。这为神经电路必须实现的目标提供了一个原则性的规范。在这里,我们尝试通过将推断视为优化问题来解决大脑如何进行推断的问题。我们考虑了在给定内在和外在神经元连接的知识的情况下,如何通过神经元群体之间的定向连接和信息传递来支持随之而来的识别动力学。我们假设大脑将世界建模为一个动态系统,该系统为感觉器官施加因果结构。感知等同于对这个内部模型的优化或反转,以解释感觉输入。给定一个关于如何生成感觉数据的模型,我们使用通用变分方法来对模型反转进行建模,以提供规定识别的方程;也就是说,代表感觉输入原因的神经元活动的动力学。在这里,我们专注于一个模型,其层次结构和动态结构使模拟大脑能够识别和预测感觉状态的序列。我们首先回顾这些模型及其在变分自由能公式下的反转。然后,我们表明大脑具有实施这种反转的必要基础设施,并使用生成和识别鸟鸣的合成鸟进行刺激。