Friston Karl
The Wellcome Department of Imaging Neuroscience, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3BG, UK.
Philos Trans R Soc Lond B Biol Sci. 2005 Apr 29;360(1456):815-36. doi: 10.1098/rstb.2005.1622.
This article concerns the nature of evoked brain responses and the principles underlying their generation. We start with the premise that the sensory brain has evolved to represent or infer the causes of changes in its sensory inputs. The problem of inference is well formulated in statistical terms. The statistical fundaments of inference may therefore afford important constraints on neuronal implementation. By formulating the original ideas of Helmholtz on perception, in terms of modern-day statistical theories, one arrives at a model of perceptual inference and learning that can explain a remarkable range of neurobiological facts.It turns out that the problems of inferring the causes of sensory input (perceptual inference) and learning the relationship between input and cause (perceptual learning) can be resolved using exactly the same principle. Specifically, both inference and learning rest on minimizing the brain's free energy, as defined in statistical physics. Furthermore, inference and learning can proceed in a biologically plausible fashion. Cortical responses can be seen as the brain's attempt to minimize the free energy induced by a stimulus and thereby encode the most likely cause of that stimulus. Similarly, learning emerges from changes in synaptic efficacy that minimize the free energy, averaged over all stimuli encountered. The underlying scheme rests on empirical Bayes and hierarchical models of how sensory input is caused. The use of hierarchical models enables the brain to construct prior expectations in a dynamic and context-sensitive fashion. This scheme provides a principled way to understand many aspects of cortical organization and responses. The aim of this article is to encompass many apparently unrelated anatomical, physiological and psychophysical attributes of the brain within a single theoretical perspective. In terms of cortical architectures, the theoretical treatment predicts that sensory cortex should be arranged hierarchically, that connections should be reciprocal and that forward and backward connections should show a functional asymmetry (forward connections are driving, whereas backward connections are both driving and modulatory). In terms of synaptic physiology, it predicts associative plasticity and, for dynamic models, spike-timing-dependent plasticity. In terms of electrophysiology, it accounts for classical and extra classical receptive field effects and long-latency or endogenous components of evoked cortical responses. It predicts the attenuation of responses encoding prediction error with perceptual learning and explains many phenomena such as repetition suppression, mismatch negativity (MMN) and the P300 in electroencephalography. In psychophysical terms, it accounts for the behavioural correlates of these physiological phenomena, for example, priming and global precedence. The final focus of this article is on perceptual learning as measured with the MMN and the implications for empirical studies of coupling among cortical areas using evoked sensory responses.
本文关注诱发脑反应的本质及其产生的潜在原理。我们首先提出一个前提,即感觉脑已经进化到能够表征或推断其感觉输入变化的原因。推理问题可以用统计学的术语很好地表述。因此,推理的统计学基础可能对神经元的实现施加重要限制。通过用现代统计理论阐述亥姆霍兹关于感知的原始观点,人们得出了一个感知推理和学习模型,该模型可以解释一系列显著的神经生物学事实。事实证明,推断感觉输入原因(感知推理)和学习输入与原因之间关系(感知学习)的问题可以用完全相同的原理来解决。具体来说,推理和学习都基于最小化大脑的自由能,这是在统计物理学中定义的。此外,推理和学习可以以生物学上合理的方式进行。皮层反应可以看作是大脑试图最小化由刺激引起的自由能,从而编码该刺激最可能的原因。同样,学习源于突触效能的变化,这种变化使在所有遇到的刺激上平均的自由能最小化。潜在的方案基于经验贝叶斯以及关于感觉输入如何产生的分层模型。分层模型的使用使大脑能够以动态和上下文敏感的方式构建先验期望。这个方案为理解皮层组织和反应的许多方面提供了一个有原则的方法。本文的目的是在单一理论视角下涵盖大脑许多明显不相关的解剖学、生理学和心理物理学属性。就皮层结构而言,理论分析预测感觉皮层应该分层排列,连接应该是双向的,并且前向和后向连接应该表现出功能不对称(前向连接起驱动作用,而后向连接既起驱动作用又起调制作用)。就突触生理学而言,它预测了联合可塑性,对于动态模型,还预测了尖峰时间依赖性可塑性。就电生理学而言,它解释了经典和超经典感受野效应以及诱发皮层反应的长潜伏期或内源性成分。它预测了随着感知学习编码预测误差的反应的衰减,并解释了许多现象,如重复抑制、失配负波(MMN)和脑电图中的P300。从心理物理学角度来看,它解释了这些生理现象的行为相关性,例如启动和全局优先性。本文的最后重点是用MMN测量的感知学习以及对使用诱发感觉反应研究皮层区域间耦合的实证研究的影响。