Suppr超能文献

风滚草:迈向合成蛋白质马达

The Tumbleweed: towards a synthetic proteinmotor.

作者信息

Bromley Elizabeth H C, Kuwada Nathan J, Zuckermann Martin J, Donadini Roberta, Samii Laleh, Blab Gerhard A, Gemmen Gregory J, Lopez Benjamin J, Curmi Paul M G, Forde Nancy R, Woolfson Derek N, Linke Heiner

出版信息

HFSP J. 2009 Jun;3(3):204-12. doi: 10.2976/1.3111282. Epub 2009 Apr 28.

Abstract

Biomolecular motors have inspired the design and construction of artificial nanoscale motors and machines based on nucleic acids, small molecules, and inorganic nanostructures. However, the high degree of sophistication and efficiency of biomolecular motors, as well as their specific biological function, derives from the complexity afforded by protein building blocks. Here, we discuss a novel bottom-up approach to understanding biological motors by considering the construction of synthetic protein motors. Specifically, we present a design for a synthetic protein motor that moves along a linear track, dubbed the "Tumbleweed." This concept uses three discrete ligand-dependent DNA-binding domains to perform cyclically ligand-gated, rectified diffusion along a synthesized DNA molecule. Here we describe how de novo peptide design and molecular biology could be used to produce the Tumbleweed, and we explore the fundamental motor operation of such a design using numerical simulations. The construction of this and more sophisticated protein motors is an exciting challenge that is likely to enhance our understanding of the structure-function relationship in biological motors.

摘要

生物分子马达启发了基于核酸、小分子和无机纳米结构的人工纳米级马达及机器的设计与构建。然而,生物分子马达的高度复杂性、高效性及其特定生物学功能,源于蛋白质构建模块所赋予的复杂性。在此,我们讨论一种通过考虑合成蛋白质马达的构建来理解生物马达的新型自下而上方法。具体而言,我们提出了一种沿线性轨道移动的合成蛋白质马达的设计,称为“风滚草”。该概念使用三个离散的配体依赖性DNA结合结构域,沿着合成的DNA分子进行周期性配体门控的整流扩散。在此我们描述了如何利用从头肽设计和分子生物学来生产风滚草,并使用数值模拟探索这种设计的基本马达操作。构建这种以及更复杂的蛋白质马达是一项令人兴奋的挑战,可能会增进我们对生物马达结构 - 功能关系的理解。

相似文献

1
The Tumbleweed: towards a synthetic proteinmotor.
HFSP J. 2009 Jun;3(3):204-12. doi: 10.2976/1.3111282. Epub 2009 Apr 28.
2
Creating biomolecular motors based on dynein and actin-binding proteins.
Nat Nanotechnol. 2017 Mar;12(3):233-237. doi: 10.1038/nnano.2016.238. Epub 2016 Nov 14.
3
Synthetic Systems Powered by Biological Molecular Motors.
Chem Rev. 2020 Jan 8;120(1):288-309. doi: 10.1021/acs.chemrev.9b00249. Epub 2019 Sep 11.
4
Monte Carlo simulations of single and coupled synthetic molecular motors.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 1):051905. doi: 10.1103/PhysRevE.86.051905. Epub 2012 Nov 5.
6
Engineering with Biomolecular Motors.
Acc Chem Res. 2018 Dec 18;51(12):3015-3022. doi: 10.1021/acs.accounts.8b00296. Epub 2018 Oct 30.
7
Tuning the performance of an artificial protein motor.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Sep;84(3 Pt 1):031922. doi: 10.1103/PhysRevE.84.031922. Epub 2011 Sep 21.
8
Bio-inspired novel design principles for artificial molecular motors.
Curr Opin Biotechnol. 2010 Oct;21(5):683-9. doi: 10.1016/j.copbio.2010.06.003. Epub 2010 Jul 16.
9
Construction of a Chassis for a Tripartite Protein-Based Molecular Motor.
ACS Synth Biol. 2017 Jun 16;6(6):1096-1102. doi: 10.1021/acssynbio.7b00037. Epub 2017 Mar 14.
10
Track-walking molecular motors: a new generation beyond bridge-burning designs.
Nanoscale. 2019 May 16;11(19):9240-9263. doi: 10.1039/c9nr00033j.

引用本文的文献

1
Collective Molecular Machines: Multidimensionality and Reconfigurability.
Nanomicro Lett. 2024 Mar 18;16(1):155. doi: 10.1007/s40820-024-01379-4.
2
Motility of an autonomous protein-based artificial motor that operates via a burnt-bridge principle.
Nat Commun. 2024 Feb 23;15(1):1511. doi: 10.1038/s41467-024-45570-y.
4
Construction of a Chassis for a Tripartite Protein-Based Molecular Motor.
ACS Synth Biol. 2017 Jun 16;6(6):1096-1102. doi: 10.1021/acssynbio.7b00037. Epub 2017 Mar 14.
5
Artificial Molecular Machines.
Chem Rev. 2015 Sep 23;115(18):10081-206. doi: 10.1021/acs.chemrev.5b00146. Epub 2015 Sep 8.
6
Translational actomyosin research: fundamental insights and applications hand in hand.
J Muscle Res Cell Motil. 2012 Aug;33(3-4):219-33. doi: 10.1007/s10974-012-9298-5. Epub 2012 May 26.
7
HYDROGELS FROM SOFT CONTACT LENSES AND IMPLANTS TO SELF-ASSEMBLED NANOMATERIALS.
J Polym Sci A Polym Chem. 2009 Nov 15;47(22):5929-5946. doi: 10.1002/pola.23607.
8
Mechanochemical model for myosin V.
Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18261-6. doi: 10.1073/pnas.0908192106. Epub 2009 Oct 12.

本文引用的文献

1
Quantitative transcription factor binding kinetics at the single-molecule level.
Biophys J. 2009 Jan;96(2):609-20. doi: 10.1016/j.bpj.2008.09.040.
2
DNA nanomachines.
Nat Nanotechnol. 2007 May;2(5):275-84. doi: 10.1038/nnano.2007.104.
3
From biological towards artificial molecular motors.
Chemphyschem. 2008 Aug 4;9(11):1503-9. doi: 10.1002/cphc.200800216.
4
De novo computational design of retro-aldol enzymes.
Science. 2008 Mar 7;319(5868):1387-91. doi: 10.1126/science.1152692.
6
Design principles for Brownian molecular machines: how to swim in molasses and walk in a hurricane.
Phys Chem Chem Phys. 2007 Oct 7;9(37):5067-83. doi: 10.1039/b708995c. Epub 2007 Aug 28.
7
Progress in computational protein design.
Curr Opin Biotechnol. 2007 Aug;18(4):305-11. doi: 10.1016/j.copbio.2007.04.009. Epub 2007 Jul 20.
8
The art of building small: from molecular switches to molecular motors.
J Org Chem. 2007 Aug 31;72(18):6635-52. doi: 10.1021/jo070394d. Epub 2007 Jul 13.
9
High-resolution, single-molecule measurements of biomolecular motion.
Annu Rev Biophys Biomol Struct. 2007;36:171-90. doi: 10.1146/annurev.biophys.36.101106.101451.
10
Kinesin motor mechanics: binding, stepping, tracking, gating, and limping.
Biophys J. 2007 May 1;92(9):2986-95. doi: 10.1529/biophysj.106.100677. Epub 2007 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验