Bromley Elizabeth H C, Kuwada Nathan J, Zuckermann Martin J, Donadini Roberta, Samii Laleh, Blab Gerhard A, Gemmen Gregory J, Lopez Benjamin J, Curmi Paul M G, Forde Nancy R, Woolfson Derek N, Linke Heiner
HFSP J. 2009 Jun;3(3):204-12. doi: 10.2976/1.3111282. Epub 2009 Apr 28.
Biomolecular motors have inspired the design and construction of artificial nanoscale motors and machines based on nucleic acids, small molecules, and inorganic nanostructures. However, the high degree of sophistication and efficiency of biomolecular motors, as well as their specific biological function, derives from the complexity afforded by protein building blocks. Here, we discuss a novel bottom-up approach to understanding biological motors by considering the construction of synthetic protein motors. Specifically, we present a design for a synthetic protein motor that moves along a linear track, dubbed the "Tumbleweed." This concept uses three discrete ligand-dependent DNA-binding domains to perform cyclically ligand-gated, rectified diffusion along a synthesized DNA molecule. Here we describe how de novo peptide design and molecular biology could be used to produce the Tumbleweed, and we explore the fundamental motor operation of such a design using numerical simulations. The construction of this and more sophisticated protein motors is an exciting challenge that is likely to enhance our understanding of the structure-function relationship in biological motors.
生物分子马达启发了基于核酸、小分子和无机纳米结构的人工纳米级马达及机器的设计与构建。然而,生物分子马达的高度复杂性、高效性及其特定生物学功能,源于蛋白质构建模块所赋予的复杂性。在此,我们讨论一种通过考虑合成蛋白质马达的构建来理解生物马达的新型自下而上方法。具体而言,我们提出了一种沿线性轨道移动的合成蛋白质马达的设计,称为“风滚草”。该概念使用三个离散的配体依赖性DNA结合结构域,沿着合成的DNA分子进行周期性配体门控的整流扩散。在此我们描述了如何利用从头肽设计和分子生物学来生产风滚草,并使用数值模拟探索这种设计的基本马达操作。构建这种以及更复杂的蛋白质马达是一项令人兴奋的挑战,可能会增进我们对生物马达结构 - 功能关系的理解。