Suppr超能文献

利用点过程的储层自适应对生物神经网络进行功能识别。

Functional identification of biological neural networks using reservoir adaptation for point processes.

作者信息

Gürel Tayfun, Rotter Stefan, Egert Ulrich

机构信息

Bernstein Center for Computational Neuroscience Freiburg and Institute for Computer Science, Albert-Ludwig University, Freiburg, Germany.

Bernstein Center for Computational Neuroscience Freiburg and Faculty of Biology, Albert-Ludwig University, Freiburg, Germany.

出版信息

J Comput Neurosci. 2010 Aug;29(1-2):279-299. doi: 10.1007/s10827-009-0176-0. Epub 2009 Jul 29.

Abstract

The complexity of biological neural networks does not allow to directly relate their biophysical properties to the dynamics of their electrical activity. We present a reservoir computing approach for functionally identifying a biological neural network, i.e. for building an artificial system that is functionally equivalent to the reference biological network. Employing feed-forward and recurrent networks with fading memory, i.e. reservoirs, we propose a point process based learning algorithm to train the internal parameters of the reservoir and the connectivity between the reservoir and the memoryless readout neurons. Specifically, the model is an Echo State Network (ESN) with leaky integrator neurons, whose individual leakage time constants are also adapted. The proposed ESN algorithm learns a predictive model of stimulus-response relations in in vitro and simulated networks, i.e. it models their response dynamics. Receiver Operating Characteristic (ROC) curve analysis indicates that these ESNs can imitate the response signal of a reference biological network. Reservoir adaptation improved the performance of an ESN over readout-only training methods in many cases. This also held for adaptive feed-forward reservoirs, which had no recurrent dynamics. We demonstrate the predictive power of these ESNs on various tasks with cultured and simulated biological neural networks.

摘要

生物神经网络的复杂性使得无法直接将其生物物理特性与其电活动动力学联系起来。我们提出了一种用于功能识别生物神经网络的储层计算方法,即构建一个在功能上等同于参考生物网络的人工系统。利用具有衰减记忆的前馈和递归网络,即储层,我们提出了一种基于点过程的学习算法来训练储层的内部参数以及储层与无记忆读出神经元之间的连接。具体而言,该模型是一个具有泄漏积分器神经元的回声状态网络(ESN),其各个泄漏时间常数也会进行调整。所提出的ESN算法学习体外和模拟网络中刺激 - 反应关系的预测模型,即它对其反应动力学进行建模。接受者操作特征(ROC)曲线分析表明,这些ESN可以模仿参考生物网络的反应信号。在许多情况下,储层自适应比仅读出训练方法提高了ESN的性能。这对于没有递归动力学的自适应前馈储层也成立。我们在培养和模拟的生物神经网络的各种任务中展示了这些ESN的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f73c/2940037/7122e1afff90/10827_2009_176_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验