Suppr超能文献

通过内在可塑性实现的在线储层自适应,用于反向传播去相关和回声状态学习。

Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning.

作者信息

Steil Jochen J

机构信息

Honda Research Institute Europe GmbH, Offenbach, Germany.

出版信息

Neural Netw. 2007 Apr;20(3):353-64. doi: 10.1016/j.neunet.2007.04.011. Epub 2007 May 3.

Abstract

We propose to use a biologically motivated learning rule based on neural intrinsic plasticity to optimize reservoirs of analog neurons. This rule is based on an information maximization principle, it is local in time and space and thus computationally efficient. We show experimentally that it can drive the neurons' output activities to approximate exponential distributions. Thereby it implements sparse codes in the reservoir. Because of its incremental nature, the intrinsic plasticity learning is well suited for joint application with the online backpropagation-decorrelation or the least mean squares reservoir learning, whose performance can be strongly improved. We further show that classical echo state regression can also benefit from reservoirs, which are pre-trained on the given input signal with the implicit plasticity rule.

摘要

我们建议使用基于神经内在可塑性的生物激励学习规则来优化模拟神经元的储层。该规则基于信息最大化原则,在时间和空间上是局部的,因此计算效率高。我们通过实验表明,它可以驱动神经元的输出活动近似指数分布。从而在储层中实现稀疏编码。由于其增量性质,内在可塑性学习非常适合与在线反向传播去相关或最小均方储层学习联合应用,其性能可以得到显著提高。我们进一步表明,经典的回声状态回归也可以从使用隐式可塑性规则在给定输入信号上进行预训练的储层中受益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验