Zabala Francisco A, Card Gwyneth M, Fontaine Ebraheem I, Dickinson Michael H, Murray Richard M
Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
IEEE Trans Biomed Eng. 2009 Sep;56(9):2295-8. doi: 10.1109/TBME.2009.2027606. Epub 2009 Jul 28.
We have approached the problem of reverse-engineering the flight control mechanism of the fruit fly by studying the dynamics of the responses to a visual stimulus during takeoff. Building upon a prior framework [G. Card and M. Dickinson, J. Exp. Biol., vol. 211, pp. 341-353, 2008], we seek to understand the strategies employed by the animal to stabilize attitude and orientation during these evasive, highly dynamical maneuvers. As a first step, we consider the dynamics from a gray-box perspective: examining lumped forces produced by the insect's legs and wings. The reconstruction of the flight initiation dynamics, based on the unconstrained motion formulation for a rigid body, allows us to assess the fly's responses to a variety of initial conditions induced by its jump. Such assessment permits refinement by using a visual tracking algorithm to extract the kinematic envelope of the wings [E. I. Fontaine, F. Zabala, M. Dickinson, and J. Burdick, "Wing and body motion during flight initiation in Drosophila revealed by automated visual tracking," submitted for publication] in order to estimate lift and drag forces [F. Zabala, M. Dickinson, and R. Murray, "Control and stability of insect flight during highly dynamical maneuvers," submitted for publication], and recording actual leg-joint kinematics and using them to estimate jump forces [F. Zabala, "A bio-inspired model for directionality control of flight initiation," to be published.]. In this paper, we present the details of our approach in a comprehensive manner, including the salient results.
我们通过研究果蝇起飞过程中对视觉刺激的反应动力学,来解决逆向工程果蝇飞行控制机制的问题。基于之前的一个框架[G. 卡德和M. 迪金森,《实验生物学杂志》,第211卷,第341 - 353页,2008年],我们试图了解动物在这些规避性的、高度动态的机动过程中用于稳定姿态和方向的策略。作为第一步,我们从灰箱视角考虑动力学:研究昆虫腿部和翅膀产生的总合力。基于刚体的无约束运动公式对飞行起始动力学进行重构,使我们能够评估果蝇对其跳跃所引发的各种初始条件的反应。通过使用视觉跟踪算法提取翅膀的运动学包络[E. I. 方丹、F. 萨巴拉、M. 迪金森和J. 伯迪克,“通过自动视觉跟踪揭示果蝇飞行起始过程中的翅膀和身体运动”,待发表]来估计升力和阻力[F. 萨巴拉、M. 迪金森和R. 默里,“高度动态机动过程中昆虫飞行的控制与稳定性”,待发表],并记录实际的腿部关节运动学数据并用于估计跳跃力[F. 萨巴拉,“一种用于飞行起始方向控制的仿生模型”,即将发表],从而对上述评估进行完善。在本文中,我们全面介绍了我们方法的细节,包括显著的结果。