Suppr超能文献

基于体素的贝叶斯病灶-症状映射。

Voxel-based Bayesian lesion-symptom mapping.

机构信息

Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.

出版信息

Neuroimage. 2010 Jan 1;49(1):597-602. doi: 10.1016/j.neuroimage.2009.07.061. Epub 2009 Jul 30.

Abstract

Most existing voxel-based lesion-symptom mapping methods are based on the same statistical foundation: null hypothesis significance testing (NHST). The two major limitations of these methods are the inability to infer that there is no difference in lesion proportions, and a requirement for multiple-comparison correction. We propose a Bayesian approach that directly models the posterior distribution of lesion-proportion difference, and makes decisions based on inference on this posterior distribution. Compared to NHST-based approaches, our Bayesian approach yields inference results with clearer semantics, and does not require multiple-comparison correction. We evaluated our Bayesian method using simulated data, and data from a study of acute ischemic left-hemispheric stroke. Results of both experiments indicate that the Bayesian approach is sensitive in detecting regions that characterize group differences.

摘要

大多数现有的基于体素的病灶-症状映射方法都基于相同的统计基础:零假设显著性检验(NHST)。这些方法的两个主要局限性是无法推断病灶比例没有差异,并且需要进行多次比较校正。我们提出了一种贝叶斯方法,该方法直接对病灶比例差异的后验分布进行建模,并基于对该后验分布的推断做出决策。与基于 NHST 的方法相比,我们的贝叶斯方法得出的推断结果具有更清晰的语义,并且不需要多次比较校正。我们使用模拟数据和急性缺血性左半球中风研究的数据来评估我们的贝叶斯方法。这两个实验的结果都表明,贝叶斯方法在检测能体现组间差异的区域时很敏感。

相似文献

1
Voxel-based Bayesian lesion-symptom mapping.基于体素的贝叶斯病灶-症状映射。
Neuroimage. 2010 Jan 1;49(1):597-602. doi: 10.1016/j.neuroimage.2009.07.061. Epub 2009 Jul 30.
3
Voxelwise Bayesian lesion-deficit analysis.体素级贝叶斯损伤-缺陷分析
Neuroimage. 2008 May 1;40(4):1633-42. doi: 10.1016/j.neuroimage.2008.01.014. Epub 2008 Jan 26.
6
Bayesian inference of population prevalence.贝叶斯推断种群流行率。
Elife. 2021 Oct 6;10:e62461. doi: 10.7554/eLife.62461.
8
Machine learning identifies stroke features between species.机器学习识别物种间的中风特征。
Theranostics. 2021 Jan 1;11(6):3017-3034. doi: 10.7150/thno.51887. eCollection 2021.

引用本文的文献

3
Probabilistic landscape of seizure semiology localizing values.癫痫发作症状学定位价值的概率地形图。
Brain Commun. 2022 May 19;4(3):fcac130. doi: 10.1093/braincomms/fcac130. eCollection 2022.
6
Expert Group Meeting on Aphasia: A Report.失语症专家小组会议报告
Ann Indian Acad Neurol. 2019 Apr-Jun;22(2):137-146. doi: 10.4103/aian.AIAN_330_18.
7
The dimensionalities of lesion-deficit mapping.病变-缺损映射的维度。
Neuropsychologia. 2018 Jul 1;115:134-141. doi: 10.1016/j.neuropsychologia.2017.09.007. Epub 2017 Sep 19.

本文引用的文献

2
Voxelwise Bayesian lesion-deficit analysis.体素级贝叶斯损伤-缺陷分析
Neuroimage. 2008 May 1;40(4):1633-42. doi: 10.1016/j.neuroimage.2008.01.014. Epub 2008 Jan 26.
3
Improving lesion-symptom mapping.改善病灶-症状映射。
J Cogn Neurosci. 2007 Jul;19(7):1081-8. doi: 10.1162/jocn.2007.19.7.1081.
4
Power in Voxel-based lesion-symptom mapping.基于体素的病损-症状映射中的效能
J Cogn Neurosci. 2007 Jul;19(7):1067-80. doi: 10.1162/jocn.2007.19.7.1067.
6
Models of brain function in neuroimaging.
Annu Rev Psychol. 2005;56:57-87. doi: 10.1146/annurev.psych.56.091103.070311.
7
The roles of the "visual word form area" in reading.“视觉词形区”在阅读中的作用。
Neuroimage. 2005 Jan 15;24(2):548-59. doi: 10.1016/j.neuroimage.2004.08.026.
10
Voxel-based lesion-symptom mapping.基于体素的病变-症状映射。
Nat Neurosci. 2003 May;6(5):448-50. doi: 10.1038/nn1050.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验