Suppr超能文献

基于体素的病灶缺失分析中分布式处理产生假阴性的原因。

How distributed processing produces false negatives in voxel-based lesion-deficit analyses.

机构信息

Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom; Department of Speech, Language and Hearing Sciences, Faculty of Health Sciences, Universidad del Desarrollo, Concepcion 4070001, Chile.

Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom.

出版信息

Neuropsychologia. 2018 Jul 1;115:124-133. doi: 10.1016/j.neuropsychologia.2018.02.025. Epub 2018 Mar 2.

Abstract

In this study, we hypothesized that if the same deficit can be caused by damage to one or another part of a distributed neural system, then voxel-based analyses might miss critical lesion sites because preservation of each site will not be consistently associated with preserved function. The first part of our investigation used voxel-based multiple regression analyses of data from 359 right-handed stroke survivors to identify brain regions where lesion load is associated with picture naming abilities after factoring out variance related to object recognition, semantics and speech articulation so as to focus on deficits arising at the word retrieval level. A highly significant lesion-deficit relationship was identified in left temporal and frontal/premotor regions. Post-hoc analyses showed that damage to either of these sites caused the deficit of interest in less than half the affected patients (76/162 = 47%). After excluding all patients with damage to one or both of the identified regions, our second analysis revealed a new region, in the anterior part of the left putamen, which had not been previously detected because many patients had the deficit of interest after temporal or frontal damage that preserved the left putamen. The results illustrate how (i) false negative results arise when the same deficit can be caused by different lesion sites; (ii) some of the missed effects can be unveiled by adopting an iterative approach that systematically excludes patients with lesions to the areas identified in previous analyses, (iii) statistically significant voxel-based lesion-deficit mappings can be driven by a subset of patients; (iv) focal lesions to the identified regions are needed to determine whether the deficit of interest is the consequence of focal damage or much more extensive damage that includes the identified region; and, finally, (v) univariate voxel-based lesion-deficit mappings cannot, in isolation, be used to predict outcome in other patients.

摘要

在这项研究中,我们假设如果相同的缺陷可以由分布在神经系统的一个或另一个部分的损伤引起,那么体素基于分析可能会错过关键的病变部位,因为每个部位的保留将不会与保留的功能一致。我们研究的第一部分使用了 359 名右利手中风幸存者的数据的体素基于多元回归分析,以确定在去除与物体识别、语义和言语发音相关的方差后,与图片命名能力相关的大脑区域,以便专注于在单词检索水平上出现的缺陷。在左颞叶和额/运动前区域发现了一个高度显著的病变-缺陷关系。事后分析表明,这些部位的损伤导致了不到一半的受影响患者(76/162=47%)的感兴趣的缺陷。排除所有损伤了一个或两个已识别区域的患者后,我们的第二个分析揭示了一个新的区域,即左壳核的前部,由于许多患者在颞叶或额叶损伤后保留了左壳核,因此之前没有检测到这个区域。结果说明了以下几点:(i)当相同的缺陷可以由不同的病变部位引起时,会出现假阴性结果;(ii)通过采用迭代方法,系统地排除在前几次分析中确定的病变区域的患者,可以揭示一些错过的影响;(iii)基于体素的统计显著病变-缺陷映射可以由一部分患者驱动;(iv)需要对识别区域进行局灶性病变,以确定感兴趣的缺陷是局灶性损伤的结果还是包括识别区域的更广泛的损伤的结果;最后,(v)孤立的单变量体素基于病变-缺陷映射不能用于预测其他患者的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6175/6018567/3522b6a08e48/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验