Hastie T, Tibshirani R
Statistics and Data Analysis Research, AT&T Bell Laboratories, Murray Hill, New Jersey 07974.
Biometrics. 1990 Dec;46(4):1005-16.
We discuss an exploratory technique for investigating the nature of covariate effects in Cox's proportional hazards model. This technique features an additive term sigma p1 fj(chi ij), in place of the usual linear term sigma p1 chi ij beta j, where chi i1, chi i2,...,chi ip are covariate values for the ith individual. The fj(.) are unspecified smooth functions that are estimated using scatterplot smoothers. These functions can be used for descriptive purposes or to suggest transformations of the covariates. The estimation technique is a variation of the local scoring algorithm for generalized additive models (Hastie and Tibshirani, 1986, Statistical Science 1, 297-318).
我们讨论一种用于研究Cox比例风险模型中协变量效应性质的探索性技术。该技术的特点是使用加性项∑p1 fj(χij)代替通常的线性项∑p1 χijβj,其中χi1, χi2, ..., χip是第i个个体的协变量值。fj(.)是未指定的平滑函数,使用散点图平滑器进行估计。这些函数可用于描述目的或建议协变量的变换。估计技术是广义加性模型局部评分算法的一种变体(Hastie和Tibshirani,1986年,《统计科学》1,297 - 318)。