Suppr超能文献

铜绿假单胞菌中与抗生素耐药性相关的点突变检测

Detection of point mutations associated with antibiotic resistance in Pseudomonas aeruginosa.

作者信息

Gorgani Neda, Ahlbrand Scott, Patterson Andrew, Pourmand Nader

机构信息

Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA.

出版信息

Int J Antimicrob Agents. 2009 Nov;34(5):414-8. doi: 10.1016/j.ijantimicag.2009.05.013. Epub 2009 Aug 4.

Abstract

Excessive use of broad-spectrum antibiotics in hospitals has led to the emergence of highly resistant strains of Pseudomonas aeruginosa. To reduce the selection pressure for resistance, it is important to determine the antibiotic susceptibility pattern of bacteria so that hospital patients can be treated with more narrow-spectrum and target-specific antibiotics. This study describes the development of a technique for detecting point muations in the fluoroquinolone resistance-determining region of the gyrA and parC genes as well as the efflux regulatory genes mexR, mexZ and mexOZ that are associated with fluoroquinolone and aminoglycoside resistance. The assay is based on a short DNA sequencing method using multiplex-fast polymerase chain reaction (PCR) and Pyrosequencing for amplification and sequencing of the selected genes. Fifty-nine clinical isolates of P. aeruginosa were examined for mutations in the abovementioned genes. Mutations related to antibiotic resistance were detected in codons 83 and 87 of gyrA and codon 126 of the mexR regulatory gene. Results of this study suggest Pyrosequencing as a substitute for traditional methods as it provides a rapid and reliable technique for determining the antibiotic resistance pattern of a given bacterial strain in <1 h.

摘要

医院中广谱抗生素的过度使用导致了高耐药性铜绿假单胞菌菌株的出现。为了降低耐药性的选择压力,确定细菌的抗生素敏感性模式很重要,这样医院患者就可以使用更窄谱且靶向性更强的抗生素进行治疗。本研究描述了一种检测与氟喹诺酮和氨基糖苷类耐药相关的gyrA和parC基因的氟喹诺酮耐药决定区以及外排调节基因mexR、mexZ和mexOZ中的点突变的技术的开发。该检测基于一种短DNA测序方法,使用多重快速聚合酶链反应(PCR)和焦磷酸测序对选定基因进行扩增和测序。对59株铜绿假单胞菌临床分离株进行了上述基因的突变检测。在gyrA的第83和87密码子以及mexR调节基因的第126密码子中检测到与抗生素耐药相关的突变。本研究结果表明焦磷酸测序可替代传统方法,因为它提供了一种在不到1小时内确定给定细菌菌株抗生素耐药模式的快速且可靠的技术。

相似文献

1
Detection of point mutations associated with antibiotic resistance in Pseudomonas aeruginosa.
Int J Antimicrob Agents. 2009 Nov;34(5):414-8. doi: 10.1016/j.ijantimicag.2009.05.013. Epub 2009 Aug 4.
2
gyrA and parC mutations in quinolone-resistant clinical isolates of Pseudomonas aeruginosa from Nini Hospital in north Lebanon.
J Infect Chemother. 2013 Feb;19(1):77-81. doi: 10.1007/s10156-012-0455-y. Epub 2012 Jul 21.
3
The role of gyrA and parC mutations in fluoroquinolones-resistant Pseudomonas aeruginosa isolates from Iran.
Braz J Microbiol. 2016 Oct-Dec;47(4):925-930. doi: 10.1016/j.bjm.2016.07.016. Epub 2016 Jul 26.
4
Targeting efflux pumps prevents the multi-step evolution of high-level resistance to fluoroquinolone in .
Microbiol Spectr. 2025 Apr;13(4):e0298124. doi: 10.1128/spectrum.02981-24. Epub 2025 Feb 21.
7
Mutations in GyrA, ParC, MexR and NfxB in clinical isolates of Pseudomonas aeruginosa.
Int J Antimicrob Agents. 2003 May;21(5):409-13. doi: 10.1016/s0924-8579(03)00009-8.
8
Genetic and phenotypic variations of a resistant Pseudomonas aeruginosa epidemic clone.
Antimicrob Agents Chemother. 2003 Jun;47(6):1887-94. doi: 10.1128/AAC.47.6.1887-1894.2003.
9
[Mechanisms of pandrug-resistance of Pseudomonas aeruginosa].
Zhonghua Yi Xue Za Zhi. 2008 Jul 8;88(26):1859-62.

引用本文的文献

7
Antibiotic Potentiators Against Multidrug-Resistant Bacteria: Discovery, Development, and Clinical Relevance.
Front Microbiol. 2022 Jul 1;13:887251. doi: 10.3389/fmicb.2022.887251. eCollection 2022.
8
Assessment of Antibacterial and Anti-biofilm Effects of Vitamin C Against Clinical Isolates.
Front Microbiol. 2022 May 20;13:847449. doi: 10.3389/fmicb.2022.847449. eCollection 2022.
10
Design of Nanosystems for the Delivery of Quorum Sensing Inhibitors: A Preliminary Study.
Molecules. 2020 Nov 30;25(23):5655. doi: 10.3390/molecules25235655.

本文引用的文献

1
Large-scale pyrosequencing of synthetic DNA: a comparison with results from Sanger dideoxy sequencing.
Electrophoresis. 2006 Aug;27(15):3042-7. doi: 10.1002/elps.200500834.
2
Detection of gyrA mutations associated with ciprofloxacin resistance in Neisseria gonorrhoeae by rapid and reliable pre-programmed short DNA sequencing.
Int J Antimicrob Agents. 2005 Dec;26(6):486-90. doi: 10.1016/j.ijantimicag.2005.08.017. Epub 2005 Nov 7.
3
Strategies to prevent antimicrobial resistance in the intensive care unit.
Crit Care Med. 2005 Aug;33(8):1845-53. doi: 10.1097/01.ccm.0000171849.04952.79.
5
Expression of the MexXY efflux pump in amikacin-resistant isolates of Pseudomonas aeruginosa.
Clin Microbiol Infect. 2004 Oct;10(10):877-83. doi: 10.1111/j.1469-0691.2004.00991.x.
6
Rational use of antibiotics in the intensive care unit: impact on microbial resistance and costs.
Intensive Care Med. 2003 Jan;29(1):49-54. doi: 10.1007/s00134-002-1565-2. Epub 2002 Dec 10.
7
Mechanisms of antibiotic resistance in Pseudomonas aeruginosa.
J R Soc Med. 2002;95 Suppl 41(Suppl 41):22-6.
8
Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare?
Clin Infect Dis. 2002 Mar 1;34(5):634-40. doi: 10.1086/338782. Epub 2002 Jan 25.
9
Molecular mechanisms of fluoroquinolone resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients.
Antimicrob Agents Chemother. 2000 Mar;44(3):710-2. doi: 10.1128/AAC.44.3.710-712.2000.
10
Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides.
Antimicrob Agents Chemother. 1999 Nov;43(11):2624-8. doi: 10.1128/AAC.43.11.2624.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验