Suppr超能文献

基于基因组表达谱的人类疾病-药物网络。

Human disease-drug network based on genomic expression profiles.

机构信息

Computational Biology, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America.

出版信息

PLoS One. 2009 Aug 6;4(8):e6536. doi: 10.1371/journal.pone.0006536.

Abstract

BACKGROUND

Drug repositioning offers the possibility of faster development times and reduced risks in drug discovery. With the rapid development of high-throughput technologies and ever-increasing accumulation of whole genome-level datasets, an increasing number of diseases and drugs can be comprehensively characterized by the changes they induce in gene expression, protein, metabolites and phenotypes.

METHODOLOGY/PRINCIPAL FINDINGS: We performed a systematic, large-scale analysis of genomic expression profiles of human diseases and drugs to create a disease-drug network. A network of 170,027 significant interactions was extracted from the approximately 24.5 million comparisons between approximately 7,000 publicly available transcriptomic profiles. The network includes 645 disease-disease, 5,008 disease-drug, and 164,374 drug-drug relationships. At least 60% of the disease-disease pairs were in the same disease area as determined by the Medical Subject Headings (MeSH) disease classification tree. The remaining can drive a molecular level nosology by discovering relationships between seemingly unrelated diseases, such as a connection between bipolar disorder and hereditary spastic paraplegia, and a connection between actinic keratosis and cancer. Among the 5,008 disease-drug links, connections with negative scores suggest new indications for existing drugs, such as the use of some antimalaria drugs for Crohn's disease, and a variety of existing drugs for Huntington's disease; while the positive scoring connections can aid in drug side effect identification, such as tamoxifen's undesired carcinogenic property. From the approximately 37K drug-drug relationships, we discover relationships that aid in target and pathway deconvolution, such as 1) KCNMA1 as a potential molecular target of lobeline, and 2) both apoptotic DNA fragmentation and G2/M DNA damage checkpoint regulation as potential pathway targets of daunorubicin.

CONCLUSIONS/SIGNIFICANCE: We have automatically generated thousands of disease and drug expression profiles using GEO datasets, and constructed a large scale disease-drug network for effective and efficient drug repositioning as well as drug target/pathway identification.

摘要

背景

药物重定位提供了更快的药物发现时间和降低药物开发风险的可能性。随着高通量技术的快速发展和全基因组数据集的不断积累,越来越多的疾病和药物可以通过它们在基因表达、蛋白质、代谢物和表型中引起的变化进行全面描述。

方法/主要发现:我们对人类疾病和药物的基因组表达谱进行了系统的、大规模的分析,创建了一个疾病-药物网络。从大约 7000 个公开转录组谱之间大约 2450 万次比较中提取了一个包含 170027 个显著相互作用的网络。该网络包括 645 个疾病-疾病、5008 个疾病-药物和 164374 个药物-药物关系。至少 60%的疾病-疾病对是根据医学主题词(MeSH)疾病分类树确定的同一疾病领域的疾病。其余的疾病可以通过发现看似无关的疾病之间的关系,如双相情感障碍和遗传性痉挛性截瘫之间的关系,以及光化性角化病和癌症之间的关系,来驱动分子水平的分类学。在 5008 个疾病-药物联系中,具有负分数的联系表明现有药物的新适应症,例如一些抗疟药物治疗克罗恩病,以及各种现有药物治疗亨廷顿病;而正分数的联系可以帮助识别药物的副作用,如他莫昔芬的不良致癌特性。从大约 37K 的药物-药物关系中,我们发现了有助于目标和途径分解的关系,例如 1)KCNMA1 作为洛贝林的潜在分子靶标,以及 2)凋亡 DNA 片段化和 G2/M DNA 损伤检查点调节作为柔红霉素的潜在途径靶标。

结论/意义:我们使用 GEO 数据集自动生成了数千个疾病和药物表达谱,并构建了一个大规模的疾病-药物网络,用于有效和高效的药物重定位以及药物靶点/途径的识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/2715883/d9434261fe85/pone.0006536.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验