Suppr超能文献

使用连续收缩先验的时空信号检测

Spatiotemporal signal detection using continuous shrinkage priors.

作者信息

Jhuang An-Ting, Fuentes Montserrat, Bandyopadhyay Dipankar, Reich Brian J

机构信息

Principal Data Scientist, UnitedHealth Group Research & Development, Minnetonka, Minnesota.

Department of Statistics and Acturial Science & Provost, University of Iowa, Iowa City, Iowa.

出版信息

Stat Med. 2020 Feb 27. doi: 10.1002/sim.8514.

Abstract

Periodontal disease (PD) is a chronic inflammatory disease that affects the gum tissue and bone supporting the teeth. Although tooth-site level PD progression is believed to be spatio-temporally referenced, the whole-mouth average periodontal pocket depth (PPD) has been commonly used as an indicator of the current/active status of PD. This leads to imminent loss of information, and imprecise parameter estimates. Despite availability of statistical methods that accommodates spatiotemporal information for responses collected at the tooth-site level, the enormity of longitudinal databases derived from oral health practice-based settings render them unscalable for application. To mitigate this, we introduce a Bayesian spatiotemporal model to detect problematic/diseased tooth-sites dynamically inside the mouth for any subject obtained from large databases. This is achieved via a spatial continuous sparsity-inducing shrinkage prior on spatially varying linear-trend regression coefficients. A low-rank representation captures the nonstationary covariance structure of the PPD outcomes, and facilitates the relevant Markov chain Monte Carlo computing steps applicable to thousands of study subjects. Application of our method to both simulated data and to a rich database of electronic dental records from the HealthPartners Institute reveal improved prediction performances, compared with alternative models with usual Gaussian priors for regression parameters and conditionally autoregressive specification of the covariance structure.

摘要

牙周病(PD)是一种慢性炎症性疾病,会影响牙龈组织和支撑牙齿的骨骼。尽管人们认为牙齿部位水平的牙周病进展在时空上是有参照的,但全口平均牙周袋深度(PPD)一直被普遍用作牙周病当前/活跃状态的指标。这导致信息的即刻丢失以及参数估计不准确。尽管有统计方法可以处理在牙齿部位水平收集的反应的时空信息,但基于口腔健康实践环境得出的纵向数据库规模巨大,使其无法应用。为了缓解这一问题,我们引入了一种贝叶斯时空模型,用于动态检测从大型数据库中获取的任何受试者口腔内有问题/患病的牙齿部位。这是通过对空间变化的线性趋势回归系数采用空间连续稀疏诱导收缩先验来实现的。低秩表示捕获了PPD结果的非平稳协方差结构,并便于适用于数千名研究对象的相关马尔可夫链蒙特卡罗计算步骤。将我们的方法应用于模拟数据以及来自健康合作伙伴研究所的丰富电子牙科记录数据库时,与对回归参数采用常规高斯先验和协方差结构的条件自回归规范的替代模型相比,显示出了更好的预测性能。

相似文献

9
Bayesian regression analysis of skewed tensor responses.贝叶斯回归分析偏张量响应。
Biometrics. 2023 Sep;79(3):1814-1825. doi: 10.1111/biom.13743. Epub 2022 Sep 10.

本文引用的文献

1
Spatial Signal Detection Using Continuous Shrinkage Priors.使用连续收缩先验的空间信号检测
Technometrics. 2019;61(4):494-506. doi: 10.1080/00401706.2018.1546622. Epub 2019 Mar 22.
6
False Discovery Control in Large-Scale Spatial Multiple Testing.大规模空间多重检验中的错误发现控制
J R Stat Soc Series B Stat Methodol. 2015 Jan 1;77(1):59-83. doi: 10.1111/rssb.12064.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验