Komori Ryota, Amano Yukari, Ogawa-Ohnishi Mari, Matsubayashi Yoshikatsu
Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):15067-72. doi: 10.1073/pnas.0902801106. Epub 2009 Jul 28.
Tyrosine sulfation is a posttranslational modification common in peptides and proteins synthesized by the secretory pathway in most eukaryotes. In plants, this modification is critical for the biological activities of a subset of peptide hormones such as PSK and PSY1. In animals, tyrosine sulfation is catalyzed by Golgi-localized type II transmembrane proteins called tyrosylprotein sulfotransferases (TPSTs). However, no orthologs of animal TPST genes have been found in plants, suggesting that plants have evolved plant-specific TPSTs structurally distinct from their animal counterparts. To investigate the mechanisms of tyrosine sulfation in plants, we purified TPST activity from microsomal fractions of Arabidopsis MM2d cells, and identified a 62-kDa protein that specifically interacts with the sulfation motif of PSY1 precursor peptide. This protein is a 500-aa type I transmembrane protein that shows no sequence similarity to animal TPSTs. A recombinant version of this protein expressed in yeast catalyzed tyrosine sulfation of both PSY1 and PSK precursor polypeptide in vitro, indicating that the newly identified protein is indeed an Arabidopsis (At)TPST. AtTPST is expressed throughout the plant body, and the highest levels of expression are in the root apical meristem. A loss-of-function mutant of AtTPST displayed a marked dwarf phenotype accompanied by stunted roots, pale green leaves, reduction in higher order veins, early senescence, and a reduced number of flowers and siliques. Our results indicate that plants and animals independently acquired tyrosine sulfation enzymes through convergent evolution.
酪氨酸硫酸化是一种翻译后修饰,在大多数真核生物中由分泌途径合成的肽和蛋白质中很常见。在植物中,这种修饰对于一部分肽激素(如PSK和PSY1)的生物活性至关重要。在动物中,酪氨酸硫酸化由高尔基体定位的II型跨膜蛋白酪氨酸蛋白硫酸转移酶(TPSTs)催化。然而,在植物中尚未发现动物TPST基因的直系同源物,这表明植物已经进化出了在结构上与其动物对应物不同的植物特异性TPSTs。为了研究植物中酪氨酸硫酸化的机制,我们从拟南芥MM2d细胞的微粒体部分纯化了TPST活性,并鉴定出一种与PSY1前体肽的硫酸化基序特异性相互作用的62 kDa蛋白质。这种蛋白质是一种500个氨基酸的I型跨膜蛋白,与动物TPSTs没有序列相似性。在酵母中表达的该蛋白质的重组版本在体外催化了PSY1和PSK前体多肽的酪氨酸硫酸化,表明新鉴定的蛋白质确实是拟南芥(At)TPST。AtTPST在整个植物体内都有表达,最高表达水平出现在根尖分生组织中。AtTPST的功能缺失突变体表现出明显的矮化表型,伴有根系发育不良、叶片淡绿、高阶叶脉减少、早衰以及花和角果数量减少。我们的结果表明,植物和动物通过趋同进化独立获得了酪氨酸硫酸化酶。