Paaijmans Krijn P, Read Andrew F, Thomas Matthew B
Center for Infectious Disease Dynamics, Department of Entomology, Chemical Ecology Laboratory, Pennsylvania State University, University Park, PA 16802, USA.
Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13844-9. doi: 10.1073/pnas.0903423106. Epub 2009 Aug 3.
The incubation period for malaria parasites within the mosquito is exquisitely temperature-sensitive, so that temperature is a major determinant of malaria risk. Epidemiological models are increasingly used to guide allocation of disease control resources and to assess the likely impact of climate change on global malaria burdens. Temperature-based malaria transmission is generally incorporated into these models using mean monthly temperatures, yet temperatures fluctuate throughout the diurnal cycle. Here we use a thermodynamic malaria development model to demonstrate that temperature fluctuation can substantially alter the incubation period of the parasite, and hence malaria transmission rates. We find that, in general, temperature fluctuation reduces the impact of increases in mean temperature. Diurnal temperature fluctuation around means >21 degrees C slows parasite development compared with constant temperatures, whereas fluctuation around <21 degrees C speeds development. Consequently, models which ignore diurnal variation overestimate malaria risk in warmer environments and underestimate risk in cooler environments. To illustrate the implications further, we explore the influence of diurnal temperature fluctuation on malaria transmission at a site in the Kenyan Highlands. Based on local meteorological data, we find that the annual epidemics of malaria at this site cannot be explained without invoking the influence of diurnal temperature fluctuation. Moreover, while temperature fluctuation reduces the relative influence of a subtle warming trend apparent over the last 20 years, it nonetheless makes the effects biologically more significant. Such effects of short-term temperature fluctuations have not previously been considered but are central to understanding current malaria transmission and the consequences of climate change.
疟原虫在蚊子体内的潜伏期对温度极为敏感,因此温度是疟疾风险的主要决定因素。流行病学模型越来越多地用于指导疾病控制资源的分配,并评估气候变化对全球疟疾负担可能产生的影响。基于温度的疟疾传播通常使用月平均温度纳入这些模型,但温度在昼夜周期中会有所波动。在此,我们使用一个热力学疟疾发育模型来证明,温度波动会显著改变疟原虫的潜伏期,进而影响疟疾传播率。我们发现,一般来说,温度波动会降低平均温度升高的影响。与恒温相比,平均温度>21摄氏度时的昼夜温度波动会减缓疟原虫的发育,而平均温度<21摄氏度时的波动则会加速发育。因此,忽略昼夜变化的模型会高估温暖环境中的疟疾风险,而低估寒冷环境中的风险。为了进一步说明其影响,我们探讨了肯尼亚高地某一地点的昼夜温度波动对疟疾传播的影响。根据当地气象数据,我们发现,如果不考虑昼夜温度波动的影响,该地点的年度疟疾疫情就无法得到解释。此外,虽然温度波动降低了过去20年中明显的微妙变暖趋势的相对影响,但它在生物学上的影响却更为显著。短期温度波动的这种影响以前从未被考虑过,但对于理解当前的疟疾传播以及气候变化的后果至关重要。