Bethoney Kelley A, King Megan C, Hinshaw Jenny E, Ostap E Michael, Lemmon Mark A
Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA.
Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13359-64. doi: 10.1073/pnas.0906945106. Epub 2009 Aug 3.
The large GTPase dynamin plays a key role in clathrin-mediated endocytosis in animal cells, although its mechanism of action remains unclear. Dynamins 1, 2, and 3 contain a pleckstrin homology (PH) domain that binds phosphoinositides with a very low affinity (K(D) > 1 mM), and this interaction appears to be crucial for function. These observations prompted the suggestion that an array of PH domains drives multivalent binding of dynamin oligomers to phosphoinositide-containing membranes. Although in vitro experiments reported here are consistent with this hypothesis, we find that PH domain mutations that abolish dynamin function do not alter localization of the protein in transfected cells, indicating that the PH domain does not play a simple targeting role. An alternative possibility is suggested by the geometry of dynamin helices resolved by electron microscopy. Even with one phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P(2)] molecule bound per PH domain, these dynamin assemblies will elevate the concentration of PtdIns(4,5)P(2) at coated pit necks, and effectively cluster (or sequester) this phosphoinositide. In vitro fluorescence quenching studies using labeled phosphoinositides are consistent with dynamin-induced PtdIns(4,5)P(2) clustering. We therefore propose that the ability of dynamin to alter the local distribution of PtdIns(4,5)P(2) could be crucial for the role of this GTPase in promoting membrane scission during clathrin-mediated endocytosis. PtdIns(4,5)P(2) clustering could promote vesicle scission through direct effects on membrane properties, or might play a role in dynamin's ability to regulate actin polymerization.
大型GTP酶发动蛋白在动物细胞的网格蛋白介导的内吞作用中起关键作用,尽管其作用机制仍不清楚。发动蛋白1、2和3含有一个普列克底物蛋白同源(PH)结构域,该结构域以非常低的亲和力(K(D)>1 mM)结合磷酸肌醇,这种相互作用似乎对功能至关重要。这些观察结果提示,一系列PH结构域驱动发动蛋白寡聚体与含磷酸肌醇的膜进行多价结合。尽管此处报道的体外实验与该假设一致,但我们发现,消除发动蛋白功能的PH结构域突变不会改变转染细胞中该蛋白的定位,这表明PH结构域不发挥简单的靶向作用。电子显微镜解析的发动蛋白螺旋结构的几何形状提示了另一种可能性。即使每个PH结构域结合一个磷脂酰肌醇-4,5-二磷酸[PtdIns(4,5)P(2)]分子,这些发动蛋白组装体也会提高包被小窝颈部的PtdIns(4,5)P(2)浓度,并有效地聚集(或隔离)这种磷酸肌醇。使用标记的磷酸肌醇进行的体外荧光猝灭研究与发动蛋白诱导的PtdIns(4,5)P(2)聚集一致。因此,我们提出,发动蛋白改变PtdIns(4,5)P(2)局部分布的能力可能对这种GTP酶在网格蛋白介导的内吞作用中促进膜分裂的作用至关重要。PtdIns(4,5)P(2)聚集可能通过对膜特性的直接影响促进囊泡分裂,或者可能在发动蛋白调节肌动蛋白聚合的能力中发挥作用。