Yang G L, Chang M N
Department of Mathematics, University of Maryland, College Park 20742.
Math Biosci. 1990 Mar;98(2):157-69. doi: 10.1016/0025-5564(90)90121-e.
Epidemiologic surveys of the age-specific prevalence of antibody to hepatitis A virus (anti-HAV) provide information on the spread of infection such as the infection rate and age-dependent characteristics. However, the data on prevalence are confounded with the mortality and diminished immunity of surveyed individuals. Through modeling, the age-specific prevalence of an individual can be separated from these confounding factors. A Markov chain is used to model the process of acquisition of anti-HAV by an individual and to derive the age-specific prevalence. Data from Frösner et al. [Am. J. Epidemiol. 110:63-69 (1979)] are used for illustration and estimation of parameters. The model offers an explanation of the well-known phenomenon of a decline in prevalence in older age. In addition to hepatitis, the framework of the model can be adapted to analyzing seroepidemiologic surveys of other diseases.
甲型肝炎病毒抗体(抗-HAV)年龄别患病率的流行病学调查提供了有关感染传播的信息,如感染率和年龄依赖性特征。然而,患病率数据与被调查个体的死亡率和免疫力下降相混淆。通过建模,可以将个体的年龄别患病率与这些混杂因素分开。使用马尔可夫链对个体获得抗-HAV的过程进行建模,并得出年龄别患病率。来自弗罗斯纳等人[《美国流行病学杂志》110:63 - 69(1979年)]的数据用于说明和参数估计。该模型对老年患病率下降这一众所周知的现象提供了解释。除了肝炎,该模型框架还可适用于分析其他疾病的血清流行病学调查。