Yang Grace
Department of Mathematics, University of Maryland, College Park, MD 20742, USA.
Lifetime Data Anal. 2013 Jul;19(3):393-411. doi: 10.1007/s10985-013-9250-z. Epub 2013 Mar 2.
J. Neyman used stochastic processes extensively in his applied work. One example is the Fix and Neyman (F-N) competing risks model (1951) that uses finite homogeneous Markov processes to analyse clinical trials with breast cancer patients. We revisit the F-N model, and compare it with the Kaplan-Meier (K-M) formulation for right censored data. The comparison offers a way to generalize the K-M formulation to include risks of recovery and relapses in the calculation of a patient's survival probability. The generalization is to extend the F-N model to a nonhomogeneous Markov process. Closed-form solutions of the survival probability are available in special cases of the nonhomogeneous processes, like the popular multiple decrement model (including the K-M model) and Chiang's staging model, but these models do not consider recovery and relapses while the F-N model does. An analysis of sero-epidemiology current status data with recurrent events is illustrated. Fix and Neyman used Neyman's RBAN (regular best asymptotic normal) estimates for the risks, and provided a numerical example showing the importance of considering both the survival probability and the length of time of a patient living a normal life in the evaluation of clinical trials. The said extension would result in a complicated model and it is unlikely to find analytical closed-form solutions for survival analysis. With ever increasing computing power, numerical methods offer a viable way of investigating the problem.
J. 奈曼在其应用工作中广泛使用了随机过程。一个例子是菲克斯和奈曼(F-N)竞争风险模型(1951),该模型使用有限齐次马尔可夫过程来分析乳腺癌患者的临床试验。我们重新审视F-N模型,并将其与用于右删失数据的卡普兰-迈耶(K-M)公式进行比较。这种比较提供了一种将K-M公式推广的方法,以便在计算患者生存概率时纳入康复和复发风险。推广的方法是将F-N模型扩展为非齐次马尔可夫过程。在非齐次过程的特殊情况下,如流行的多重减量模型(包括K-M模型)和蒋氏分期模型,生存概率的闭式解是可用的,但这些模型没有考虑康复和复发,而F-N模型考虑了。文中给出了对具有复发事件的血清流行病学现状数据的分析。菲克斯和奈曼对风险使用了奈曼的RBAN(正则最佳渐近正态)估计,并提供了一个数值示例,表明在评估临床试验时考虑生存概率和患者正常生活时间长度的重要性。上述扩展将导致一个复杂的模型,并且不太可能找到用于生存分析的解析闭式解。随着计算能力的不断提高,数值方法为研究该问题提供了一种可行的途径。