Zheng Shaohua, Kong Shaohua, Huang Zihan, Pan Lin, Zeng Taidui, Zheng Bin, Yang Mingjing, Liu Zheng
College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China.
School of Future Technology, Harbin Institute of Technology, Harbin 150000, China.
Diagnostics (Basel). 2022 Nov 1;12(11):2660. doi: 10.3390/diagnostics12112660.
Pulmonary nodule detection with low-dose computed tomography (LDCT) is indispensable in early lung cancer screening. Although existing methods have achieved excellent detection sensitivity, nodule detection still faces challenges such as nodule size variation and uneven distribution, as well as excessive nodule-like false positive candidates in the detection results. We propose a novel two-stage nodule detection (TSND) method. In the first stage, a multi-scale feature detection network (MSFD-Net) is designed to generate nodule candidates. This includes a proposed feature extraction network to learn the multi-scale feature representation of candidates. In the second stage, a candidate scoring network (CS-Net) is built to estimate the score of candidate patches to realize false positive reduction (FPR). Finally, we develop an end-to-end nodule computer-aided detection (CAD) system based on the proposed TSND for LDCT scans. Experimental results on the LUNA16 dataset show that our proposed TSND obtained an excellent average sensitivity of 90.59% at seven predefined false positives (FPs) points: 0.125, 0.25, 0.5, 1, 2, 4, and 8 FPs per scan on the FROC curve introduced in LUNA16. Moreover, comparative experiments indicate that our CS-Net can effectively suppress false positives and improve the detection performance of TSND.
低剂量计算机断层扫描(LDCT)肺部结节检测在早期肺癌筛查中不可或缺。尽管现有方法已取得出色的检测灵敏度,但结节检测仍面临诸如结节大小变化、分布不均以及检测结果中存在过多类似结节的假阳性候选物等挑战。我们提出了一种新颖的两阶段结节检测(TSND)方法。在第一阶段,设计了一个多尺度特征检测网络(MSFD-Net)来生成结节候选物。这包括一个提议的特征提取网络,用于学习候选物的多尺度特征表示。在第二阶段,构建一个候选物评分网络(CS-Net)来估计候选补丁的分数,以实现假阳性减少(FPR)。最后,我们基于所提出的用于LDCT扫描的TSND开发了一个端到端的结节计算机辅助检测(CAD)系统。在LUNA16数据集上的实验结果表明,我们提出的TSND在LUNA16引入的FROC曲线上的七个预定义假阳性(FP)点:每次扫描0.125、0.25、0.5、1、2、4和8个FP处,获得了90.59%的出色平均灵敏度。此外,对比实验表明,我们的CS-Net可以有效抑制假阳性并提高TSND的检测性能。