Suppr超能文献

有效连通性揭示了在反应抑制过程中,额皮质-苍白球丘脑底核直接通路(额皮质-丘脑底核)和间接通路(额皮质-纹状体-苍白球)在额基底神经节中都发挥着重要作用。

Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition.

机构信息

Department of Psychology, University of Amsterdam, 1018 WB Amsterdam, The Netherlands.

出版信息

J Neurosci. 2011 May 4;31(18):6891-9. doi: 10.1523/JNEUROSCI.5253-10.2011.

Abstract

Fronto-basal ganglia pathways play a crucial role in voluntary action control, including the ability to inhibit motor responses. Response inhibition might be mediated via a fast hyperdirect pathway connecting the right inferior frontal gyrus (rIFG) and the presupplementary motor area (preSMA) with the subthalamic nucleus or, alternatively, via the indirect pathway between the cortex and caudate. To test the relative contribution of these two pathways to inhibitory action control, we applied an innovative quantification method for effective brain connectivity. Functional magnetic resonance imaging data were collected from 20 human participants performing a Simon interference task with an occasional stop signal. A single right-lateralized model involving both the hyperdirect and indirect pathways best explained the pattern of brain activation on stop trials. Notably, the overall connection strength of this combined model was highest on successfully inhibited trials. Inspection of the relationship between behavior and connection values revealed that fast inhibitors showed increased connectivity between rIFG and right caudate (rCaudate), whereas slow inhibitors were associated with increased connectivity between preSMA and rCaudate. In compliance, connection strengths from the rIFG and preSMA into the rCaudate were correlated negatively. If participants failed to stop, the magnitude of experienced interference (Simon effect), but not stopping latency, was predictive for the hyperdirect-indirect model connections. Together, the present results suggest that both the hyperdirect and indirect pathways act together to implement response inhibition, whereas the relationship between performance control and the fronto-basal ganglia connections points toward a top-down mechanism that underlies voluntary action control.

摘要

额-基底神经节通路在自主运动控制中起着至关重要的作用,包括抑制运动反应的能力。反应抑制可能通过快速的直接通路来介导,该通路连接右侧额下回(rIFG)和预备运动区(preSMA)与丘脑底核,或者通过皮层和尾状核之间的间接通路来介导。为了测试这两条通路对抑制性运动控制的相对贡献,我们应用了一种创新的有效脑连接定量方法。我们从 20 名执行西蒙干扰任务的人类参与者中收集了功能磁共振成像数据,其中偶尔会出现停止信号。一个涉及直接通路和间接通路的单一右侧模型最能解释停止试验中的大脑激活模式。值得注意的是,这个组合模型的整体连接强度在成功抑制的试验中最高。检查行为和连接值之间的关系表明,快速抑制剂表现出 rIFG 与右侧尾状核(rCaudate)之间的连接增强,而慢速抑制剂与 preSMA 和 rCaudate 之间的连接增强有关。相应地,rIFG 和 preSMA 进入 rCaudate 的连接强度呈负相关。如果参与者未能停止,所经历的干扰(西蒙效应)的大小,但不是停止潜伏期,对直接通路-间接通路模型的连接具有预测性。总的来说,这些结果表明,直接通路和间接通路都共同作用来实施反应抑制,而表现控制和额-基底神经节连接之间的关系指向了一种自上而下的机制,这种机制是自愿行动控制的基础。

相似文献

2
Cortical and subcortical contributions to Stop signal response inhibition: role of the subthalamic nucleus.
J Neurosci. 2006 Mar 1;26(9):2424-33. doi: 10.1523/JNEUROSCI.4682-05.2006.
4
How preparation changes the need for top-down control of the basal ganglia when inhibiting premature actions.
J Neurosci. 2012 Aug 8;32(32):10870-8. doi: 10.1523/JNEUROSCI.0902-12.2012.
7
Aging and inhibitory control of action: cortico-subthalamic connection strength predicts stopping performance.
J Neurosci. 2012 Jun 13;32(24):8401-12. doi: 10.1523/JNEUROSCI.6360-11.2012.
8
Prefrontal-Subthalamic Hyperdirect Pathway Modulates Movement Inhibition in Humans.
Neuron. 2020 May 20;106(4):579-588.e3. doi: 10.1016/j.neuron.2020.02.012. Epub 2020 Mar 9.
9
Cortical Potentials Evoked by Subthalamic Stimulation Demonstrate a Short Latency Hyperdirect Pathway in Humans.
J Neurosci. 2018 Oct 24;38(43):9129-9141. doi: 10.1523/JNEUROSCI.1327-18.2018. Epub 2018 Sep 10.

引用本文的文献

3
Cross-Modal Transfer Effects of the Go/No-Go Training With Visual Stimuli.
Brain Behav. 2025 Feb;15(2):e70309. doi: 10.1002/brb3.70309.
4
EAAT2 Activation Regulates Glutamate Excitotoxicity and Reduces Impulsivity in a Rodent Model of Parkinson's Disease.
Mol Neurobiol. 2025 May;62(5):5787-5803. doi: 10.1007/s12035-024-04644-0. Epub 2024 Dec 4.
8
Causal computations of supplementary motor area on spatial impulsivity.
Sci Rep. 2024 Jul 24;14(1):17040. doi: 10.1038/s41598-024-67673-8.
9
Response inhibition in premotor cortex corresponds to a complex reshuffle of the mesoscopic information network.
Netw Neurosci. 2024 Jul 1;8(2):597-622. doi: 10.1162/netn_a_00365. eCollection 2024.
10
Asymmetries of the subthalamic activity in Parkinson's disease: phase-amplitude coupling among local field potentials.
Brain Commun. 2024 Jun 11;6(3):fcae201. doi: 10.1093/braincomms/fcae201. eCollection 2024.

本文引用的文献

1
Neurocognitive mechanisms of action control: resisting the call of the Sirens.
Wiley Interdiscip Rev Cogn Sci. 2011 Mar;2(2):174-192. doi: 10.1002/wcs.99. Epub 2010 Jul 13.
3
The effect of fMRI (noise) on cognitive control.
J Exp Psychol Hum Percept Perform. 2012 Apr;38(2):290-301. doi: 10.1037/a0026353. Epub 2011 Dec 26.
4
Effective connectivity of fMRI data using ancestral graph theory: dealing with missing regions.
Neuroimage. 2011 Feb 14;54(4):2695-705. doi: 10.1016/j.neuroimage.2010.10.054. Epub 2010 Nov 1.
5
From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses.
Biol Psychiatry. 2011 Jun 15;69(12):e55-68. doi: 10.1016/j.biopsych.2010.07.024. Epub 2010 Oct 8.
6
Cortico-striatal connections predict control over speed and accuracy in perceptual decision making.
Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15916-20. doi: 10.1073/pnas.1004932107. Epub 2010 Aug 23.
7
Theta burst stimulation dissociates attention and action updating in human inferior frontal cortex.
Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13966-71. doi: 10.1073/pnas.1001957107. Epub 2010 Jul 14.
8
Cortical and subcortical interactions during action reprogramming and their related white matter pathways.
Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13240-5. doi: 10.1073/pnas.1000674107. Epub 2010 Jul 9.
9
Model-based analyses: Promises, pitfalls, and example applications to the study of cognitive control.
Q J Exp Psychol (Hove). 2012;65(2):252-67. doi: 10.1080/17470211003668272. Epub 2011 Jun 24.
10
Distinct frontal systems for response inhibition, attentional capture, and error processing.
Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):6106-11. doi: 10.1073/pnas.1000175107. Epub 2010 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验