Kusari Souvik, Zühlke Sebastian, Borsch Thomas, Spiteller Michael
Institut für Umweltforschung (INFU), Technische Universität Dortmund, Otto-Hahn-Strasse 6, D-44221 Dortmund, Germany.
Phytochemistry. 2009 Jul;70(10):1222-32. doi: 10.1016/j.phytochem.2009.07.022. Epub 2009 Aug 14.
A spectrum of eight pharmacologically important secondary compounds, all putatively belonging to the polyketide pathway (hypericin, pseudohypericin, emodin, hyperforin, hyperoside, rutin, quercetin, and quercitrin) were analyzed in several hypericin-producing species of Hypericum by LC-MS/MS. Different organs such as leaves, stems and roots of wild-grown plants of Hypericum hirsutum L., Hypericum maculatum Crantz s. l., Hypericum montanum L., Hypericum tetrapterum Fr. collected in Slovakia and of Hypericum perforatum L. collected in India were examined individually. Highest contents of hypericin, pseudohypericin, and emodin were found in H. montanum, suggesting that there are alternative species to H. perforatum with high pharmaceutical value. Amounts of hyperforin and quercetin were highest in H. perforatum, whereas highest contents of hyperoside and quercitrin were found in H. maculatum. A significant positive correlation between hypericin and pseudohypericin as well as between hypericin and emodin was observed by Kruskal's multidimensional scaling (MDS), indicating a parallel enhancement of emodin as a common precursor in the biosynthetic pathways of hypericin and pseudohypericin. Furthermore, MDS combined with principal component analysis (PCA) revealed strong correlations in the occurrence of pseudohypericin and emodin, pseudohypericin and quercitrin, hypericin and quercitrin, emodin and quercitrin, hyperoside and quercitrin, rutin and quercetin, and, hyperforin and quercetin. On the other hand, rutin showed a negative correlation with emodin as well as with quercitrin. Furthermore, hierarchical agglomerative cluster analysis (HACA) clustered hypericin and pseudohypericin, grouping emodin at equal distance from both. Considerable infraspecific variability in secondary compound spectrum and load of different populations of H. maculatum from Slovakia underscores the need for detailed studies of genotypic variation and environmental factors in relation to polyketide biosynthesis and accumulation.
通过液相色谱-串联质谱法(LC-MS/MS)分析了金丝桃属几种产金丝桃素的物种中8种具有重要药理作用的次生化合物,这些化合物均被认为属于聚酮化合物途径(金丝桃素、假金丝桃素、大黄素、贯叶连翘素、金丝桃苷、芦丁、槲皮素和槲皮苷)。分别对斯洛伐克采集的毛金丝桃、大花金丝桃、山地金丝桃、四翅金丝桃以及印度采集的贯叶连翘等野生植株的叶、茎和根等不同器官进行了检测。在山地金丝桃中发现金丝桃素、假金丝桃素和大黄素的含量最高,这表明除贯叶连翘外,还有其他具有高药用价值的物种。贯叶连翘中贯叶连翘素和槲皮素的含量最高,而金丝桃苷和槲皮苷的最高含量则出现在大花金丝桃中。通过克鲁斯卡尔多维尺度分析(MDS)观察到金丝桃素与假金丝桃素之间以及金丝桃素与大黄素之间存在显著正相关,这表明大黄素作为金丝桃素和假金丝桃素生物合成途径中的共同前体,其含量会平行增加。此外,MDS与主成分分析(PCA)相结合显示,假金丝桃素与大黄素、假金丝桃素与槲皮苷、金丝桃素与槲皮苷、大黄素与槲皮苷、金丝桃苷与槲皮苷、芦丁与槲皮素以及贯叶连翘素与槲皮素之间存在强相关性。另一方面,芦丁与大黄素以及与槲皮苷呈负相关。此外,层次凝聚聚类分析(HACA)将金丝桃素和假金丝桃素聚类在一起,大黄素与它们的距离相等。斯洛伐克大花金丝桃不同种群次生化合物谱和含量存在相当大的种内变异性,这突出了对与聚酮化合物生物合成和积累相关的基因型变异和环境因素进行详细研究的必要性。