Suppr超能文献

选择性过滤器附近的亚基间盐桥可稳定Kir1.1的活性状态。

An intersubunit salt bridge near the selectivity filter stabilizes the active state of Kir1.1.

作者信息

Sackin Henry, Nanazashvili Mikheil, Li Hui, Palmer Lawrence G, Walters D Eric

机构信息

Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois, USA.

出版信息

Biophys J. 2009 Aug 19;97(4):1058-66. doi: 10.1016/j.bpj.2009.05.056.

Abstract

ROMK (Kir1.1) potassium channels are closed by internal acidification with a pKa of 6.7 +/- 0.01 in 100 mM external K and a pKa of 7.0 +/- 0.01 in 1 mM external K. Internal acidification in 1 mM K (but not 100 mM K) not only closed the pH gate but also inactivated Kir1.1, such that realkalization did not restore channel activity until high K was returned to the bath. We identified a new putative intersubunit salt bridge (R128-E132-Kir1.1b) in the P-loop of the channel near the selectivity filter that affected the K sensitivity of the inactivation process. Mutation of either R128-Kir1.1b or E132-Kir1.1b caused inactivation in both 1 mM and 100 mM external K during oocyte acidification. However, 300 mM external K (but not 200 mM Na + 100 mM K) protected both E132Q and R128Y from inactivation. External application of a modified honey-bee toxin, tertiapin Q (TPNQ), also protected Kir1.1 from inactivation in 1 mM K and protected E132Q and R128Y from inactivation in 100 mM K, which suggests that TPNQ binding to the outer mouth of the channel stabilizes the active state. Pretreatment of Kir1.1 with external Ba prevented Kir1.1 inactivation, similar to pretreatment with TPNQ. In addition, mutations that disrupted transmembrane helix H-bonding (K61M-Kir1.1b) or stabilized a selectivity filter to helix-pore linkage (V121T-Kir1.1b) also protected both E132Q and R128Y from inactivation in 1 mM K and 100 mM K. Our results are consistent with Kir inactivation arising from conformational changes near the selectivity filter, analogous to C-type inactivation.

摘要

ROMK(Kir1.1)钾通道在细胞内酸化时关闭,在100 mM细胞外钾浓度下其pKa为6.7±0.01,在1 mM细胞外钾浓度下pKa为7.0±0.01。在1 mM钾(而非100 mM钾)环境下的细胞内酸化不仅关闭了pH门控,还使Kir1.1失活,以至于在恢复高钾浓度至浴液之前,重新碱化也无法恢复通道活性。我们在通道靠近选择性过滤器的P环中鉴定出一个新的假定亚基间盐桥(R128-E132-Kir1.1b),它影响失活过程的钾敏感性。R128-Kir1.1b或E132-Kir1.1b的突变在卵母细胞酸化期间导致1 mM和100 mM细胞外钾环境下均出现失活。然而,300 mM细胞外钾(而非200 mM钠 + 100 mM钾)可保护E132Q和R128Y不发生失活。外部应用修饰后的蜜蜂毒素tertiapin Q(TPNQ)也可保护Kir1.1在1 mM钾环境下不失活,并保护E132Q和R128Y在100 mM钾环境下不失活,这表明TPNQ与通道外口的结合稳定了活性状态。用外部钡预处理Kir1.1可防止Kir1.1失活,类似于用TPNQ预处理。此外,破坏跨膜螺旋氢键的突变(K61M-Kir1.1b)或稳定选择性过滤器与螺旋-孔连接的突变(V121T-Kir1.1b)也可保护E132Q和R128Y在1 mM钾和100 mM钾环境下不失活。我们的结果与Kir失活源于选择性过滤器附近的构象变化一致,类似于C型失活。

相似文献

2
Residues at the outer mouth of Kir1.1 determine K-dependent gating.残基位于 Kir1.1 的外口,决定了 K 依赖性门控。
Biophys J. 2012 Jun 20;102(12):2742-50. doi: 10.1016/j.bpj.2012.05.018. Epub 2012 Jun 19.
4
Role of conserved glycines in pH gating of Kir1.1 (ROMK).保守甘氨酸在Kir1.1(ROMK)pH门控中的作用。
Biophys J. 2006 May 15;90(10):3582-9. doi: 10.1529/biophysj.105.076653. Epub 2006 Mar 13.
8
Structural locus of the pH gate in the Kir1.1 inward rectifier channel.Kir1.1内向整流通道中pH门控的结构位点。
Biophys J. 2005 Apr;88(4):2597-606. doi: 10.1529/biophysj.104.051474. Epub 2005 Jan 14.
10
Localization of the pH gate in Kir1.1 channels.Kir1.1通道中pH门控的定位
Biophys J. 2006 Oct 15;91(8):2901-9. doi: 10.1529/biophysj.106.087700. Epub 2006 Aug 4.

引用本文的文献

5
Residues at the outer mouth of Kir1.1 determine K-dependent gating.残基位于 Kir1.1 的外口,决定了 K 依赖性门控。
Biophys J. 2012 Jun 20;102(12):2742-50. doi: 10.1016/j.bpj.2012.05.018. Epub 2012 Jun 19.
7
Potassium-dependent activation of Kir4.2 K⁺ channels.钾依赖性激活 Kir4.2 K⁺ 通道。
J Physiol. 2011 Dec 15;589(Pt 24):5949-63. doi: 10.1113/jphysiol.2011.220731. Epub 2011 Oct 24.
8
Kir4.1 K+ channels are regulated by external cations.Kir4.1 K+ 通道受外源性阳离子的调节。
Channels (Austin). 2011 May-Jun;5(3):269-79. doi: 10.4161/chan.5.3.15827. Epub 2011 May 1.
10
Mechanism for selectivity-inactivation coupling in KcsA potassium channels.KcsA 钾通道中选择性失活偶联的机制。
Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5272-7. doi: 10.1073/pnas.1014186108. Epub 2011 Mar 14.

本文引用的文献

3
Molecular driving forces determining potassium channel slow inactivation.决定钾通道缓慢失活的分子驱动力
Nat Struct Mol Biol. 2007 Nov;14(11):1062-9. doi: 10.1038/nsmb1309. Epub 2007 Oct 7.
5
External K activation of Kir1.1 depends on the pH gate.Kir1.1的胞外钾离子激活依赖于pH门控。
Biophys J. 2007 Jul 15;93(2):L14-6. doi: 10.1529/biophysj.107.110122. Epub 2007 May 11.
6
Localization of the pH gate in Kir1.1 channels.Kir1.1通道中pH门控的定位
Biophys J. 2006 Oct 15;91(8):2901-9. doi: 10.1529/biophysj.106.087700. Epub 2006 Aug 4.
9
Role of conserved glycines in pH gating of Kir1.1 (ROMK).保守甘氨酸在Kir1.1(ROMK)pH门控中的作用。
Biophys J. 2006 May 15;90(10):3582-9. doi: 10.1529/biophysj.105.076653. Epub 2006 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验