Suppr超能文献

Clustering of the human skeletal muscle fibers using linear programming and angular Hilbertian metrics.

作者信息

Neji Radhouène, Besbes Ahmed, Komodakis Nikos, Deux Jean-François, Maatouk Mezri, Rahmouni Alain, Bassez Guillaume, Fleury Gilles, Paragios Nikos

机构信息

Laboratoire MAS, Ecole Centrale Paris, Châtenay-Malabry, France.

出版信息

Inf Process Med Imaging. 2009;21:14-25. doi: 10.1007/978-3-642-02498-6_2.

Abstract

In this paper, we present a manifold clustering method fo the classification of fibers obtained from diffusion tensor images (DTI) of the human skeletal muscle. Using a linear programming formulation of prototype-based clustering, we propose a novel fiber classification algorithm over manifolds that circumvents the necessity to embed the data in low dimensional spaces and determines automatically the number of clusters. Furthermore, we propose the use of angular Hilbertian metrics between multivariate normal distributions to define a family of distances between tensors that we generalize to fibers. These metrics are used to approximate the geodesic distances over the fiber manifold. We also discuss the case where only geodesic distances to a reduced set of landmark fibers are available. The experimental validation of the method is done using a manually annotated significant dataset of DTI of the calf muscle for healthy and diseased subjects.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验