Erban Radek, Chapman S Jonathan
Mathematical Institute, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK.
Phys Biol. 2009 Aug 21;6(4):046001. doi: 10.1088/1478-3975/6/4/046001.
Several stochastic simulation algorithms (SSAs) have recently been proposed for modelling reaction-diffusion processes in cellular and molecular biology. In this paper, two commonly used SSAs are studied. The first SSA is an on-lattice model described by the reaction-diffusion master equation. The second SSA is an off-lattice model based on the simulation of Brownian motion of individual molecules and their reactive collisions. In both cases, it is shown that the commonly used implementation of bimolecular reactions (i.e. the reactions of the form A + B --> C or A + A --> C) might lead to incorrect results. Improvements of both SSAs are suggested which overcome the difficulties highlighted. In particular, a formula is presented for the smallest possible compartment size (lattice spacing) which can be correctly implemented in the first model. This implementation uses a new formula for the rate of bimolecular reactions per compartment (lattice site).
最近,人们提出了几种随机模拟算法(SSA),用于对细胞和分子生物学中的反应扩散过程进行建模。本文研究了两种常用的SSA。第一种SSA是由反应扩散主方程描述的格点模型。第二种SSA是基于单个分子的布朗运动及其反应碰撞模拟的非格点模型。在这两种情况下,都表明双分子反应的常用实现方式(即形式为A + B --> C或A + A --> C的反应)可能会导致错误的结果。建议对这两种SSA进行改进,以克服所强调的困难。特别是,给出了一个公式,用于计算可以在第一个模型中正确实现的最小可能隔室大小(晶格间距)。这种实现方式使用了一个新的公式来计算每个隔室(晶格位点)的双分子反应速率。