Suppr超能文献

使用 Rosetta 进行全原子精修的 CASP8 结构预测。

Structure prediction for CASP8 with all-atom refinement using Rosetta.

机构信息

Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.

出版信息

Proteins. 2009;77 Suppl 9(0 9):89-99. doi: 10.1002/prot.22540.

Abstract

We describe predictions made using the Rosetta structure prediction methodology for the Eighth Critical Assessment of Techniques for Protein Structure Prediction. Aggressive sampling and all-atom refinement were carried out for nearly all targets. A combination of alignment methodologies was used to generate starting models from a range of templates, and the models were then subjected to Rosetta all atom refinement. For the 64 domains with readily identified templates, the best submitted model was better than the best alignment to the best template in the Protein Data Bank for 24 cases, and improved over the best starting model for 43 cases. For 13 targets where only very distant sequence relationships to proteins of known structure were detected, models were generated using the Rosetta de novo structure prediction methodology followed by all-atom refinement; in several cases the submitted models were better than those based on the available templates. Of the 12 refinement challenges, the best submitted model improved on the starting model in seven cases. These improvements over the starting template-based models and refinement tests demonstrate the power of Rosetta structure refinement in improving model accuracy.

摘要

我们描述了使用 Rosetta 结构预测方法学进行第八次蛋白质结构预测技术关键评估的预测结果。几乎所有的目标都进行了激进的采样和全原子细化。使用多种对齐方法学从一系列模板中生成起始模型,然后对模型进行 Rosetta 全原子细化。对于 64 个具有易于识别模板的域,在 24 个情况下,提交的最佳模型优于最佳模板在蛋白质数据库中的最佳对齐,在 43 个情况下,优于最佳起始模型。对于 13 个仅检测到与已知结构蛋白质的非常远的序列关系的目标,使用 Rosetta 从头结构预测方法学生成模型,然后进行全原子细化;在几种情况下,提交的模型优于基于可用模板的模型。在 12 个细化挑战中,在 7 个情况下,最佳提交模型改进了起始模型。这些对基于起始模板模型和细化测试的改进表明了 Rosetta 结构细化在提高模型准确性方面的强大功能。

相似文献

7
CASP8 results in context of previous experiments.CASP8 结果与之前的实验有关。
Proteins. 2009;77 Suppl 9(Suppl 9):217-28. doi: 10.1002/prot.22562.
9
Sequence comparison and protein structure prediction.序列比较与蛋白质结构预测。
Curr Opin Struct Biol. 2006 Jun;16(3):374-84. doi: 10.1016/j.sbi.2006.05.006. Epub 2006 May 19.

引用本文的文献

本文引用的文献

1
Analysis of CASP8 targets, predictions and assessment methods.半胱天冬酶8(CASP8)靶点、预测及评估方法分析
Database (Oxford). 2009;2009:bap003. doi: 10.1093/database/bap003. Epub 2009 Apr 14.
3
PROCAIN: protein profile comparison with assisting information.PROCAIN:带有辅助信息的蛋白质谱比较
Nucleic Acids Res. 2009 Jun;37(11):3522-30. doi: 10.1093/nar/gkp212. Epub 2009 Apr 7.
6
Searching protein structure databases with DaliLite v.3.使用DaliLite v.3搜索蛋白质结构数据库。
Bioinformatics. 2008 Dec 1;24(23):2780-1. doi: 10.1093/bioinformatics/btn507. Epub 2008 Sep 25.
7
Macromolecular modeling with rosetta.使用Rosetta进行大分子建模。
Annu Rev Biochem. 2008;77:363-82. doi: 10.1146/annurev.biochem.77.062906.171838.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验