Suppr超能文献

在蛋白质结构预测关键评估第12轮(CASP12)中使用罗塞塔软件进行蛋白质结构预测。

Protein structure prediction using Rosetta in CASP12.

作者信息

Ovchinnikov Sergey, Park Hahnbeom, Kim David E, DiMaio Frank, Baker David

机构信息

Department of Biochemistry, University of Washington, Seattle, Washington.

Institute for Protein Design, University of Washington, Seattle, Washington.

出版信息

Proteins. 2018 Mar;86 Suppl 1(Suppl 1):113-121. doi: 10.1002/prot.25390. Epub 2017 Oct 8.

Abstract

We describe several notable aspects of our structure predictions using Rosetta in CASP12 in the free modeling (FM) and refinement (TR) categories. First, we had previously generated (and published) models for most large protein families lacking experimentally determined structures using Rosetta guided by co-evolution based contact predictions, and for several targets these models proved better starting points for comparative modeling than any known crystal structure-our model database thus starts to fulfill one of the goals of the original protein structure initiative. Second, while our "human" group simply submitted ROBETTA models for most targets, for six targets expert intervention improved predictions considerably; the largest improvement was for T0886 where we correctly parsed two discontinuous domains guided by predicted contact maps to accurately identify a structural homolog of the same fold. Third, Rosetta all atom refinement followed by MD simulations led to consistent but small improvements when starting models were close to the native structure, and larger but less consistent improvements when starting models were further away.

摘要

我们描述了在第12届蛋白质结构预测关键评估(CASP12)中,我们使用Rosetta在自由建模(FM)和精修(TR)类别下进行结构预测的几个显著方面。首先,我们之前已经使用基于协同进化的接触预测指导下的Rosetta,为大多数缺乏实验确定结构的大型蛋白质家族生成(并发表)了模型,对于几个目标,这些模型被证明是比任何已知晶体结构更好的比较建模起点——我们的模型数据库因此开始实现原始蛋白质结构计划的目标之一。其次,虽然我们的“人类”团队为大多数目标简单提交了ROBETTA模型,但对于六个目标,专家干预显著改善了预测;最大的改进是针对T0886,在那里我们通过预测的接触图正确解析了两个不连续的结构域,以准确识别相同折叠的结构同源物。第三,当起始模型接近天然结构时,Rosetta全原子精修后进行分子动力学模拟导致了一致但较小的改进,而当起始模型距离较远时,改进较大但不太一致。

相似文献

引用本文的文献

10
DATA-DRIVEN LEARNING OF GEOMETRIC SCATTERING MODULES FOR GNNS.基于数据驱动的图神经网络几何散射模块学习
IEEE Int Workshop Mach Learn Signal Process. 2021 Oct;2021. doi: 10.1109/mlsp52302.2021.9596169. Epub 2021 Nov 15.

本文引用的文献

7
CASP11 refinement experiments with ROSETTA.使用ROSETTA进行的半胱天冬酶11优化实验。
Proteins. 2016 Sep;84 Suppl 1(Suppl 1):314-22. doi: 10.1002/prot.24862. Epub 2015 Aug 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验