Suppr超能文献

高通量基因组学提高了番茄的育种效率。

High-throughput genomics enhances tomato breeding efficiency.

机构信息

Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples "Federico II", Via Università 100, 80055 Portici, Naples, Italy.

出版信息

Curr Genomics. 2009 Mar;10(1):1-9. doi: 10.2174/138920209787581226.

Abstract

Tomato (Solanum lycopersicum) is considered a model plant species for a group of economically important crops, such as potato, pepper, eggplant, since it exhibits a reduced genomic size (950 Mb), a short generation time, and routine transformation technologies. Moreover, it shares with the other Solanaceous plants the same haploid chromosome number and a high level of conserved genomic organization. Finally, many genomic and genetic resources are actually available for tomato, and the sequencing of its genome is in progress. These features make tomato an ideal species for theoretical studies and practical applications in the genomics field. The present review describes how structural genomics assist the selection of new varieties resistant to pathogens that cause damage to this crop. Many molecular markers highly linked to resistance genes and cloned resistance genes are available and could be used for a high-throughput screening of multiresistant varieties. Moreover, a new genomics-assisted breeding approach for improving fruit quality is presented and discussed. It relies on the identification of genetic mechanisms controlling the trait of interest through functional genomics tools. Following this approach, polymorphisms in major gene sequences responsible for variability in the expression of the trait under study are then exploited for tracking simultaneously favourable allele combinations in breeding programs using high-throughput genomic technologies. This aims at pyramiding in the genetic background of commercial cultivars alleles that increase their performances. In conclusion, tomato breeding strategies supported by advanced technologies are expected to target increased productivity and lower costs of improved genotypes even for complex traits.

摘要

番茄(Solanum lycopersicum)被认为是一类重要经济作物(如马铃薯、辣椒、茄子)的模式植物,因为它具有较小的基因组大小(950Mb)、较短的世代周期和常规的转化技术。此外,它与茄科植物共享相同的单倍体染色体数目和高度保守的基因组组织。最后,番茄实际上有许多基因组和遗传资源,并且其基因组测序正在进行中。这些特点使番茄成为基因组学领域理论研究和实际应用的理想物种。本文综述了结构基因组学如何有助于选择对这种作物造成损害的病原体具有抗性的新品种。许多与抗性基因高度连锁的分子标记和克隆的抗性基因已经可用,并可用于高通量筛选多抗性品种。此外,还提出并讨论了一种新的基于基因组学的改良果实品质的育种方法。它依赖于通过功能基因组学工具鉴定控制感兴趣性状的遗传机制。通过这种方法,可以利用负责研究性状表达变异性的主基因序列中的多态性,在使用高通量基因组技术的育种计划中同时跟踪有利等位基因组合。其目的是在商业品种的遗传背景中增加提高其性能的等位基因。总之,支持先进技术的番茄育种策略有望针对提高生产力和降低改良基因型的成本,即使是针对复杂性状也是如此。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7555/2699839/b1e5243d43d1/CG-10-1_F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验