Crudu Alina, Debussche Arnaud, Radulescu Ovidiu
IRMAR UMR CNRS 6625 Université de Rennes1, Campus de Beaulieu, 35042 Rennes, France.
BMC Syst Biol. 2009 Sep 7;3:89. doi: 10.1186/1752-0509-3-89.
Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models.
We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion [1-3] which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples.
Hybrid simplifications can be used for onion-like (multi-layered) approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach.
通过马尔可夫过程对基因网络进行随机模拟在分子生物学中具有重要应用。精确模拟算法的复杂性随要执行的离散跳跃次数而增加。近似方案通过减少模拟离散事件的数量来减少计算时间。此外,回答有关网络拓扑与内在噪声产生和传播之间关系的重要问题应基于一般数学结果。对于精确模型而言,这些一般结果很难获得。
我们提出了一个统一框架,用于对多尺度随机基因网络动力学的马尔可夫模型进行混合简化。我们讨论了几种可能的混合简化方法,并提供了从纯跳跃过程中获得它们的算法。在混合简化中,一些组件是离散的并通过跳跃演化,而其他组件是连续的。混合简化是通过部分克莱默斯 - 莫亚尔展开得到的[1 - 3],这等同于将中心极限定理应用于一个子模型。通过平均和变量聚合,我们大幅减少了模拟时间并消除了非关键反应。混合简化和平均简化可用于更有效的模拟算法,以及获得将噪声与拓扑和时间尺度相关联的一般设计原则。简化模型能够很好地再现基因网络的随机特性,包括间歇性现象中的等待时间、波动幅度和平稳分布。我们在几个基因网络示例中展示了这些方法。
混合简化可用于对多尺度生化系统采用洋葱状(多层)方法,即在不同尺度上使用各种描述。离散和连续变量集采用不同方法处理,并以物理合理的方式耦合在一起。