Eschrich Steven, Zhang Hongling, Zhao Haiyan, Boulware David, Lee Ji-Hyun, Bloom Gregory, Torres-Roca Javier F
Division of Biomedical Informatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
Int J Radiat Oncol Biol Phys. 2009 Oct 1;75(2):497-505. doi: 10.1016/j.ijrobp.2009.05.056.
The discovery of effective biomarkers is a fundamental goal of molecular medicine. Developing a systems-biology understanding of radiosensitivity can enhance our ability of identifying radiation-specific biomarkers.
Radiosensitivity, as represented by the survival fraction at 2 Gy was modeled in 48 human cancer cell lines. We applied a linear regression algorithm that integrates gene expression with biological variables, including ras status (mut/wt), tissue of origin and p53 status (mut/wt).
The biomarker discovery platform is a network representation of the top 500 genes identified by linear regression analysis. This network was reduced to a 10-hub network that includes c-Jun, HDAC1, RELA (p65 subunit of NFKB), PKC-beta, SUMO-1, c-Abl, STAT1, AR, CDK1, and IRF1. Nine targets associated with radiosensitization drugs are linked to the network, demonstrating clinical relevance. Furthermore, the model identified four significant radiosensitivity clusters of terms and genes. Ras was a dominant variable in the analysis, as was the tissue of origin, and their interaction with gene expression but not p53. Overrepresented biological pathways differed between clusters but included DNA repair, cell cycle, apoptosis, and metabolism. The c-Jun network hub was validated using a knockdown approach in 8 human cell lines representing lung, colon, and breast cancers.
We have developed a novel radiation-biomarker discovery platform using a systems biology modeling approach. We believe this platform will play a central role in the integration of biology into clinical radiation oncology practice.
发现有效的生物标志物是分子医学的一个基本目标。从系统生物学角度理解放射敏感性可以增强我们识别辐射特异性生物标志物的能力。
以2 Gy时的存活分数表示的放射敏感性在48个人类癌细胞系中进行建模。我们应用了一种线性回归算法,该算法将基因表达与生物学变量整合在一起,这些变量包括ras状态(突变型/野生型)、组织来源和p53状态(突变型/野生型)。
生物标志物发现平台是通过线性回归分析确定的前500个基因的网络表示。该网络被简化为一个包含c-Jun、HDAC1、RELA(NFKB的p65亚基)、PKC-β、SUMO-1、c-Abl、STAT1、AR、CDK1和IRF1的10枢纽网络。九个与放射增敏药物相关的靶点与该网络相连,证明了其临床相关性。此外,该模型确定了四个具有显著放射敏感性的术语和基因簇。Ras在分析中是一个主导变量,组织来源也是如此,它们与基因表达相互作用,但与p53无关。不同簇之间过度表达的生物学途径有所不同,但包括DNA修复、细胞周期、细胞凋亡和代谢。使用敲低方法在代表肺癌、结肠癌和乳腺癌的8个人类细胞系中对c-Jun网络枢纽进行了验证。
我们使用系统生物学建模方法开发了一个新型的辐射生物标志物发现平台。我们相信这个平台将在将生物学整合到临床放射肿瘤学实践中发挥核心作用。