Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany.
PLoS One. 2009 Sep 16;4(9):e7011. doi: 10.1371/journal.pone.0007011.
Up until recently the only available experimental (high resolution) structure of a G-protein-coupled receptor (GPCR) was that of bovine rhodopsin. In the past few years the determination of GPCR structures has accelerated with three new receptors, as well as squid rhodopsin, being successfully crystallized. All share a common molecular architecture of seven transmembrane helices and can therefore serve as templates for building molecular models of homologous GPCRs. However, despite the common general architecture of these structures key differences do exist between them. The choice of which experimental GPCR structure(s) to use for building a comparative model of a particular GPCR is unclear and without detailed structural and sequence analyses, could be arbitrary. The aim of this study is therefore to perform a systematic and detailed analysis of sequence-structure relationships of known GPCR structures.
We analyzed in detail conserved and unique sequence motifs and structural features in experimentally-determined GPCR structures. Deeper insight into specific and important structural features of GPCRs as well as valuable information for template selection has been gained. Using key features a workflow has been formulated for identifying the most appropriate template(s) for building homology models of GPCRs of unknown structure. This workflow was applied to a set of 14 human family A GPCRs suggesting for each the most appropriate template(s) for building a comparative molecular model.
The available crystal structures represent only a subset of all possible structural variation in family A GPCRs. Some GPCRs have structural features that are distributed over different crystal structures or which are not present in the templates suggesting that homology models should be built using multiple templates. This study provides a systematic analysis of GPCR crystal structures and a consistent method for identifying suitable templates for GPCR homology modelling that will help to produce more reliable three-dimensional models.
直到最近,唯一可用的实验(高分辨率)G 蛋白偶联受体(GPCR)结构是牛视紫红质。在过去的几年中,随着三个新受体以及鱿鱼视紫红质的成功结晶,GPCR 结构的测定速度加快。所有这些都具有七个跨膜螺旋的共同分子结构,因此可以作为构建同源 GPCR 分子模型的模板。然而,尽管这些结构具有共同的一般分子结构,但它们之间确实存在关键差异。选择使用哪种实验 GPCR 结构来构建特定 GPCR 的比较模型尚不清楚,并且如果没有详细的结构和序列分析,这种选择可能是任意的。因此,本研究旨在对已知 GPCR 结构的序列-结构关系进行系统和详细的分析。
我们详细分析了实验确定的 GPCR 结构中保守和独特的序列基序和结构特征。深入了解 GPCR 的特定和重要结构特征以及模板选择的有价值信息。使用关键特征,我们制定了一种工作流程,用于识别构建未知结构 GPCR 同源模型的最合适模板。该工作流程应用于一组 14 个人类家族 A GPCR,为每个 GPCR 建议了构建比较分子模型的最合适模板。
可用的晶体结构仅代表家族 A GPCR 中所有可能结构变异的一个子集。一些 GPCR 具有分布在不同晶体结构中的结构特征或在模板中不存在的结构特征,这表明同源模型应该使用多个模板构建。本研究提供了对 GPCR 晶体结构的系统分析以及识别适合 GPCR 同源建模的模板的一致方法,这将有助于生成更可靠的三维模型。