Esposito Alessandro, Schlachter Simon, Schierle Gabriele S Kaminski, Elder Alan D, Diaspro Alberto, Wouters Fred S, Kaminski Clemens F, Iliev Asparouh I
Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
Methods Mol Biol. 2009;586:117-42. doi: 10.1007/978-1-60761-376-3_6.
Fluorescence microscopy is a non-invasive technique that allows high resolution imaging of cytoskeletal structures. Advances in the field of fluorescent labelling (e.g., fluorescent proteins, quantum dots, tetracystein domains) and optics (e.g., super-resolution techniques and quantitative methods) not only provide better images of the cytoskeleton, but also offer an opportunity to quantify the complex of molecular events that populate this highly organised, yet dynamic, structure.For instance, fluorescence lifetime imaging microscopy and Förster resonance energy transfer imaging allow mapping of protein-protein interactions; furthermore, techniques based on the measurement of photobleaching kinetics (e.g., fluorescence recovery after photobleaching, fluorescence loss in photobleaching, and fluorescence localisation after photobleaching) permit the characterisation of axonal transport and, more generally, diffusion of relevant biomolecules.Quantitative fluorescence microscopy techniques offer powerful tools for understanding the physiological and pathological roles of molecular machineries in the living cell.
荧光显微镜是一种非侵入性技术,可实现细胞骨架结构的高分辨率成像。荧光标记领域(如荧光蛋白、量子点、四半胱氨酸结构域)和光学领域(如超分辨率技术和定量方法)的进展不仅能提供更好的细胞骨架图像,还为量化构成这种高度有序但动态结构的复杂分子事件提供了机会。例如,荧光寿命成像显微镜和Förster共振能量转移成像可绘制蛋白质 - 蛋白质相互作用图谱;此外,基于光漂白动力学测量的技术(如光漂白后荧光恢复、光漂白中荧光损失和光漂白后荧光定位)可用于表征轴突运输,更广泛地说,可用于表征相关生物分子的扩散。定量荧光显微镜技术为理解分子机制在活细胞中的生理和病理作用提供了强大工具。