Suppr超能文献

频率依赖性双突触抑制在锥体网络中的作用:发育中大鼠新皮层中的普遍途径。

Frequency-dependent disynaptic inhibition in the pyramidal network: a ubiquitous pathway in the developing rat neocortex.

机构信息

Laboratory of Neural Microcircuitry, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland.

出版信息

J Physiol. 2009 Nov 15;587(Pt 22):5411-25. doi: 10.1113/jphysiol.2009.176552. Epub 2009 Sep 21.

Abstract

The general structure of the mammalian neocortex is remarkably similar across different cortical areas. Despite certain cytoarchitectural specializations and deviations from the general blueprint, the principal organization of the neocortex is relatively uniform. It is not known, however, to what extent stereotypic synaptic pathways resemble each other between cortical areas, and how far they might reflect possible functional uniformity or specialization. Here, we show that frequency-dependent disynaptic inhibition (FDDI) is a generic circuit motif that is present in all neocortical areas we investigated (primary somatosensory, auditory and motor cortex, secondary visual cortex and medial prefrontal cortex of the developing rat). We did find, however, area-specific differences in occurrence and kinetics of FDDI and the short-term dynamics of monosynaptic connections between pyramidal cells (PCs). Connectivity between PCs, both monosynaptic and via FDDI, is higher in primary cortices. The long-term effectiveness of FDDI is likely to be limited by an activity-dependent attenuation of the PC-interneuron synaptic transmission. Our results suggest that the basic construction of neocortical synaptic pathways follows principles that are independent of modality or hierarchical order within the neocortex.

摘要

哺乳动物新皮层的总体结构在不同的皮层区域非常相似。尽管存在某些细胞结构的专门化和偏离一般蓝图的情况,但新皮层的主要组织相对统一。然而,尚不清楚在皮层区域之间,刻板的突触通路在多大程度上彼此相似,以及它们在多大程度上反映了可能的功能统一性或专门化。在这里,我们表明,频率依赖性双突触抑制(FDDI)是一种通用的电路模式,存在于我们研究的所有新皮层区域(初级体感、听觉和运动皮层、次级视觉皮层和发育中大鼠的内侧前额叶皮层)中。然而,我们确实发现 FDDI 的出现和动力学以及锥体神经元(PC)之间的单突触连接的短期动力学存在区域特异性差异。PC 之间的连接,无论是单突触还是通过 FDDI,在初级皮层中更高。FDDI 的长期有效性可能受到 PC-中间神经元突触传递的活动依赖性衰减的限制。我们的结果表明,新皮层突触通路的基本构建遵循独立于新皮层内模态或层次顺序的原则。

相似文献

1
Frequency-dependent disynaptic inhibition in the pyramidal network: a ubiquitous pathway in the developing rat neocortex.
J Physiol. 2009 Nov 15;587(Pt 22):5411-25. doi: 10.1113/jphysiol.2009.176552. Epub 2009 Sep 21.
2
Brief bursts self-inhibit and correlate the pyramidal network.
PLoS Biol. 2010 Sep 7;8(9):e1000473. doi: 10.1371/journal.pbio.1000473.
3
Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells.
Neuron. 2007 Mar 1;53(5):735-46. doi: 10.1016/j.neuron.2007.02.012.
5
Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings.
J Neurophysiol. 2007 Jan;97(1):746-60. doi: 10.1152/jn.00922.2006. Epub 2006 Nov 8.
6
Membrane potential-dependent modulation of recurrent inhibition in rat neocortex.
PLoS Biol. 2011 Mar;9(3):e1001032. doi: 10.1371/journal.pbio.1001032. Epub 2011 Mar 22.
7
Distribution of pyramidal cells associated with perineuronal nets in the neocortex of rat.
Brain Res. 2006 Nov 20;1120(1):13-22. doi: 10.1016/j.brainres.2006.08.069. Epub 2006 Sep 22.
9
A novel rat medial prefrontal cortical slice preparation to investigate synaptic transmission from amygdala to layer V prelimbic pyramidal neurons.
J Neurosci Methods. 2006 Mar 15;151(2):148-58. doi: 10.1016/j.jneumeth.2005.07.002. Epub 2005 Sep 8.
10
Presynaptic control of transmission along the pathway mediating disynaptic reciprocal inhibition in the cat.
J Physiol. 2000 Aug 1;526 Pt 3(Pt 3):623-37. doi: 10.1111/j.1469-7793.2000.t01-1-00623.x.

引用本文的文献

1
Self-supervised predictive learning accounts for cortical layer-specificity.
Nat Commun. 2025 Jul 4;16(1):6178. doi: 10.1038/s41467-025-61399-5.
2
Balanced state of networks of winner-take-all units.
PLoS Comput Biol. 2025 Jun 11;21(6):e1013081. doi: 10.1371/journal.pcbi.1013081. eCollection 2025 Jun.
3
Connectomics of predicted Sst transcriptomic types in mouse visual cortex.
Nature. 2025 Apr;640(8058):497-505. doi: 10.1038/s41586-025-08805-6. Epub 2025 Apr 9.
5
Pharmacological Signature and Target Specificity of Inhibitory Circuits Formed by Martinotti Cells in the Mouse Barrel Cortex.
J Neurosci. 2023 Jan 4;43(1):14-27. doi: 10.1523/JNEUROSCI.1661-21.2022. Epub 2022 Nov 16.
6
Transcranial Magnetic Stimulation and Neocortical Neurons: The Micro-Macro Connection.
Front Neurosci. 2022 Apr 12;16:866245. doi: 10.3389/fnins.2022.866245. eCollection 2022.
7
Dynamics of a Mutual Inhibition Circuit between Pyramidal Neurons Compared to Human Perceptual Competition.
J Neurosci. 2021 Feb 10;41(6):1251-1264. doi: 10.1523/JNEUROSCI.2503-20.2020. Epub 2020 Dec 22.
8
Contextual Integration in Cortical and Convolutional Neural Networks.
Front Comput Neurosci. 2020 Apr 23;14:31. doi: 10.3389/fncom.2020.00031. eCollection 2020.
9
Thalamic Input to Orbitofrontal Cortex Drives Brain-wide, Frequency-Dependent Inhibition Mediated by GABA and Zona Incerta.
Neuron. 2019 Dec 18;104(6):1153-1167.e4. doi: 10.1016/j.neuron.2019.09.023. Epub 2019 Oct 23.

本文引用的文献

1
Reporting ethical matters in the Journal of Physiology: standards and advice.
J Physiol. 2009 Feb 15;587(Pt 4):713-9. doi: 10.1113/jphysiol.2008.167387.
2
The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex.
Neuron. 2009 Jan 29;61(2):301-16. doi: 10.1016/j.neuron.2008.12.020.
3
Intracortical circuits of pyramidal neurons reflect their long-range axonal targets.
Nature. 2009 Feb 26;457(7233):1133-6. doi: 10.1038/nature07658. Epub 2009 Jan 18.
4
Dendritic encoding of sensory stimuli controlled by deep cortical interneurons.
Nature. 2009 Feb 26;457(7233):1137-41. doi: 10.1038/nature07663. Epub 2009 Jan 18.
5
The endocannabinoid 2-arachidonoylglycerol is responsible for the slow self-inhibition in neocortical interneurons.
J Neurosci. 2008 Dec 10;28(50):13532-41. doi: 10.1523/JNEUROSCI.0847-08.2008.
6
Complex events initiated by individual spikes in the human cerebral cortex.
PLoS Biol. 2008 Sep 2;6(9):e222. doi: 10.1371/journal.pbio.0060222.
8
Pyramidal neurons: dendritic structure and synaptic integration.
Nat Rev Neurosci. 2008 Mar;9(3):206-21. doi: 10.1038/nrn2286.
9
Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex.
Nat Neurosci. 2007 Jun;10(6):743-53. doi: 10.1038/nn1909. Epub 2007 May 21.
10
Specialized inhibitory synaptic actions between nearby neocortical pyramidal neurons.
Science. 2007 May 4;316(5825):758-61. doi: 10.1126/science.1135468.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验