Suppr超能文献

短暂爆发的自我抑制与锥体网络相关联。

Brief bursts self-inhibit and correlate the pyramidal network.

机构信息

Laboratory of Neural Microcircuitry, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

出版信息

PLoS Biol. 2010 Sep 7;8(9):e1000473. doi: 10.1371/journal.pbio.1000473.

Abstract

Inhibitory pathways are an essential component in the function of the neocortical microcircuitry. Despite the relatively small fraction of inhibitory neurons in the neocortex, these neurons are strongly activated due to their high connectivity rate and the intricate manner in which they interconnect with pyramidal cells (PCs). One prominent pathway is the frequency-dependent disynaptic inhibition (FDDI) formed between layer 5 PCs and mediated by Martinotti cells (MCs). Here, we show that simultaneous short bursts in four PCs are sufficient to exert FDDI in all neighboring PCs within the dimensions of a cortical column. This powerful inhibition is mediated by few interneurons, leading to strongly correlated membrane fluctuations and synchronous spiking between PCs simultaneously receiving FDDI. Somatic integration of such inhibition is independent and electrically isolated from monosynaptic excitation formed between the same PCs. FDDI is strongly shaped by I(h) in PC dendrites, which determines the effective integration time window for inhibitory and excitatory inputs. We propose a key disynaptic mechanism by which brief bursts generated by a few PCs can synchronize the activity in the pyramidal network.

摘要

抑制性通路是新皮层微电路功能的重要组成部分。尽管新皮层中的抑制性神经元比例相对较小,但由于其高连接率以及与锥体神经元(PC)相互连接的错综复杂方式,这些神经元被强烈激活。一个突出的途径是由 Martinotti 细胞(MC)介导的、层 5 PC 之间形成的频率依赖性双突触抑制(FDDI)。在这里,我们表明,四个 PC 中的同时短爆发足以在皮层柱维度内的所有相邻 PC 中发挥 FDDI。这种强大的抑制作用由少数中间神经元介导,导致同时接收 FDDI 的 PC 之间的膜波动和同步尖峰具有强烈相关性。这种抑制作用的躯体整合是独立的,与同一 PC 之间形成的单突触兴奋是电隔离的。FDDI 在 PC 树突中的 I(h) 中受到强烈影响,这决定了抑制性和兴奋性输入的有效整合时间窗口。我们提出了一个关键的双突触机制,即由少数几个 PC 产生的短暂爆发可以使锥体网络的活动同步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae87/2935452/3c3412bad1bf/pbio.1000473.g001.jpg

相似文献

1
Brief bursts self-inhibit and correlate the pyramidal network.
PLoS Biol. 2010 Sep 7;8(9):e1000473. doi: 10.1371/journal.pbio.1000473.
2
Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells.
Neuron. 2007 Mar 1;53(5):735-46. doi: 10.1016/j.neuron.2007.02.012.
3
Frequency-dependent disynaptic inhibition in the pyramidal network: a ubiquitous pathway in the developing rat neocortex.
J Physiol. 2009 Nov 15;587(Pt 22):5411-25. doi: 10.1113/jphysiol.2009.176552. Epub 2009 Sep 21.
4
Membrane potential-dependent modulation of recurrent inhibition in rat neocortex.
PLoS Biol. 2011 Mar;9(3):e1001032. doi: 10.1371/journal.pbio.1001032. Epub 2011 Mar 22.
5
Action potential initiation and propagation in rat neocortical pyramidal neurons.
J Physiol. 1997 Dec 15;505 ( Pt 3)(Pt 3):617-32. doi: 10.1111/j.1469-7793.1997.617ba.x.
6
Autapses enhance bursting and coincidence detection in neocortical pyramidal cells.
Nat Commun. 2018 Nov 20;9(1):4890. doi: 10.1038/s41467-018-07317-4.
7
Pyramidal cell communication within local networks in layer 2/3 of rat neocortex.
J Physiol. 2003 Aug 15;551(Pt 1):139-53. doi: 10.1113/jphysiol.2003.044784. Epub 2003 Jun 17.
8
Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo.
J Neurophysiol. 1999 Apr;81(4):1531-47. doi: 10.1152/jn.1999.81.4.1531.
9
Synchronized gamma-frequency inhibition in neocortex depends on excitatory-inhibitory interactions but not electrical synapses.
J Neurophysiol. 2016 Aug 1;116(2):351-68. doi: 10.1152/jn.00071.2016. Epub 2016 Apr 27.
10
High-Precision Fast-Spiking Basket Cell Discharges during Complex Events in the Human Neocortex.
eNeuro. 2017 Oct 13;4(5). doi: 10.1523/ENEURO.0260-17.2017. eCollection 2017 Sep-Oct.

引用本文的文献

1
Synaptic connectivity of sensorimotor circuits for vocal imitation in the songbird.
Elife. 2025 Jun 23;14:RP104609. doi: 10.7554/eLife.104609.
2
Principles of visual cortex excitatory microcircuit organization.
Innovation (Camb). 2024 Dec 12;6(1):100735. doi: 10.1016/j.xinn.2024.100735. eCollection 2025 Jan 6.
3
Learning enhances behaviorally relevant representations in apical dendrites.
Elife. 2024 Dec 27;13:RP98349. doi: 10.7554/eLife.98349.
4
Cortical interneurons: fit for function and fit to function? Evidence from development and evolution.
Front Neural Circuits. 2023 May 4;17:1172464. doi: 10.3389/fncir.2023.1172464. eCollection 2023.
6
Sensing and processing whisker deflections in rodents.
PeerJ. 2021 Feb 22;9:e10730. doi: 10.7717/peerj.10730. eCollection 2021.
7
Temporal Sharpening of Sensory Responses by Layer V in the Mouse Primary Somatosensory Cortex.
Curr Biol. 2020 May 4;30(9):1589-1599.e10. doi: 10.1016/j.cub.2020.02.004. Epub 2020 Mar 12.
8
Ketamine disinhibits dendrites and enhances calcium signals in prefrontal dendritic spines.
Nat Commun. 2020 Jan 7;11(1):72. doi: 10.1038/s41467-019-13809-8.

本文引用的文献

1
A new correlation-based measure of spike timing reliability.
Neurocomputing (Amst). 2003 Jun 1;52-54:925-931. doi: 10.1016/S0925-2312(02)00838-X.
3
Frequency-dependent disynaptic inhibition in the pyramidal network: a ubiquitous pathway in the developing rat neocortex.
J Physiol. 2009 Nov 15;587(Pt 22):5411-25. doi: 10.1113/jphysiol.2009.176552. Epub 2009 Sep 21.
4
Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle.
Science. 2009 Aug 7;325(5941):756-60. doi: 10.1126/science.1171958.
5
Intracortical circuits of pyramidal neurons reflect their long-range axonal targets.
Nature. 2009 Feb 26;457(7233):1133-6. doi: 10.1038/nature07658. Epub 2009 Jan 18.
6
Dendritic encoding of sensory stimuli controlled by deep cortical interneurons.
Nature. 2009 Feb 26;457(7233):1137-41. doi: 10.1038/nature07663. Epub 2009 Jan 18.
7
The endocannabinoid 2-arachidonoylglycerol is responsible for the slow self-inhibition in neocortical interneurons.
J Neurosci. 2008 Dec 10;28(50):13532-41. doi: 10.1523/JNEUROSCI.0847-08.2008.
8
Polysynaptic subcircuits in the neocortex: spatial and temporal diversity.
Curr Opin Neurobiol. 2008 Jun;18(3):332-7. doi: 10.1016/j.conb.2008.08.009.
9
Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex.
J Neurophysiol. 2008 Nov;100(5):2640-52. doi: 10.1152/jn.90691.2008. Epub 2008 Sep 17.
10
Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice.
Nature. 2008 Aug 14;454(7206):881-5. doi: 10.1038/nature07150. Epub 2008 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验