Suppr超能文献

应当如何以及何时使用互作组学衍生的聚类来预测功能模块和蛋白质功能?

How and when should interactome-derived clusters be used to predict functional modules and protein function?

机构信息

Department of Computer Science & Lewis-Sigler Institute for Integrative Genomics Princeton University, Princeton, NJ 08544, USA.

出版信息

Bioinformatics. 2009 Dec 1;25(23):3143-50. doi: 10.1093/bioinformatics/btp551. Epub 2009 Sep 21.

Abstract

MOTIVATION

Clustering of protein-protein interaction networks is one of the most common approaches for predicting functional modules, protein complexes and protein functions. But, how well does clustering perform at these tasks?

RESULTS

We develop a general framework to assess how well computationally derived clusters in physical interactomes overlap functional modules derived via the Gene Ontology (GO). Using this framework, we evaluate six diverse network clustering algorithms using Saccharomyces cerevisiae and show that (i) the performances of these algorithms can differ substantially when run on the same network and (ii) their relative performances change depending upon the topological characteristics of the network under consideration. For the specific task of function prediction in S.cerevisiae, we demonstrate that, surprisingly, a simple non-clustering guilt-by-association approach outperforms widely used clustering-based approaches that annotate a protein with the overrepresented biological process and cellular component terms in its cluster; this is true over the range of clustering algorithms considered. Further analysis parameterizes performance based on the number of annotated proteins, and suggests when clustering approaches should be used for interactome functional analyses. Overall our results suggest a re-examination of when and how clustering approaches should be applied to physical interactomes, and establishes guidelines by which novel clustering approaches for biological networks should be justified and evaluated with respect to functional analysis.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

蛋白质 - 蛋白质相互作用网络的聚类是预测功能模块、蛋白质复合物和蛋白质功能的最常见方法之一。但是,聚类在这些任务中的表现如何呢?

结果

我们开发了一个通用框架来评估物理相互作用组中通过基因本体论 (GO) 计算得出的功能模块与聚类的重叠程度。使用此框架,我们评估了六种不同的网络聚类算法在酿酒酵母中的应用,并表明 (i) 在同一网络上运行时,这些算法的性能可能有很大差异,以及 (ii) 它们的相对性能取决于所考虑网络的拓扑特征。对于酿酒酵母功能预测的特定任务,我们证明,令人惊讶的是,一种简单的非聚类关联方法优于广泛使用的基于聚类的方法,该方法将蛋白质注释为其聚类中过度代表的生物过程和细胞成分术语;这在考虑的聚类算法范围内是正确的。进一步的分析根据注释蛋白的数量对性能进行参数化,并建议何时应将聚类方法用于互作组功能分析。总体而言,我们的结果表明应重新审视何时以及如何将聚类方法应用于物理相互作用组,并建立了新的生物网络聚类方法应根据功能分析进行证明和评估的准则。

补充信息

补充数据可在“Bioinformatics”在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6896/3167697/90dab77d11bb/btp551f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验