Suppr超能文献

视觉搜索中速度-准确性权衡的神经约束建模:调制证据的门控积累。

Neurally constrained modeling of speed-accuracy tradeoff during visual search: gated accumulation of modulated evidence.

机构信息

Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt University , Nashville, Tennessee.

出版信息

J Neurophysiol. 2019 Apr 1;121(4):1300-1314. doi: 10.1152/jn.00507.2018. Epub 2019 Feb 6.

Abstract

Stochastic accumulator models account for response times and errors in perceptual decision making by assuming a noisy accumulation of perceptual evidence to a threshold. Previously, we explained saccade visual search decision making by macaque monkeys with a stochastic multiaccumulator model in which accumulation was driven by a gated feed-forward integration to threshold of spike trains from visually responsive neurons in frontal eye field that signal stimulus salience. This neurally constrained model quantitatively accounted for response times and errors in visual search for a target among varying numbers of distractors and replicated the dynamics of presaccadic movement neurons hypothesized to instantiate evidence accumulation. This modeling framework suggested strategic control over gate or over threshold as two potential mechanisms to accomplish speed-accuracy tradeoff (SAT). Here, we show that our gated accumulator model framework can account for visual search performance under SAT instructions observed in a milestone neurophysiological study of frontal eye field. This framework captured key elements of saccade search performance, through observed modulations of neural input, as well as flexible combinations of gate and threshold parameters necessary to explain differences in SAT strategy across monkeys. However, the trajectories of the model accumulators deviated from the dynamics of most presaccadic movement neurons. These findings demonstrate that traditional theoretical accounts of SAT are incomplete descriptions of the underlying neural adjustments that accomplish SAT, offer a novel mechanistic account of decision-making mechanisms during speed-accuracy tradeoff, and highlight questions regarding the identity of model and neural accumulators. NEW & NOTEWORTHY A gated accumulator model is used to elucidate neurocomputational mechanisms of speed-accuracy tradeoff. Whereas canonical stochastic accumulators adjust strategy only through variation of an accumulation threshold, we demonstrate that strategic adjustments are accomplished by flexible combinations of both modulation of the evidence representation and adaptation of accumulator gate and threshold. The results indicate how model-based cognitive neuroscience can translate between abstract cognitive models of performance and neural mechanisms of speed-accuracy tradeoff.

摘要

随机积累器模型通过假设感知证据在阈值处的噪声积累来解释感知决策中的反应时间和错误。之前,我们使用一种随机多积累器模型来解释猕猴的眼跳视觉搜索决策,该模型的积累是由前眼场中对视觉反应神经元的尖峰信号进行门控前馈整合到阈值驱动的,这些神经元信号表示刺激显著性。这个受神经约束的模型定量地解释了在不同数量的干扰物中寻找目标的视觉搜索的反应时间和错误,并且复制了被假设为实现证据积累的预眼跳运动神经元的动力学。这个建模框架表明,作为实现速度-准确性权衡(SAT)的两种潜在机制,对门或阈值的策略控制是可能的。在这里,我们表明,我们的门控积累器模型框架可以解释在前眼场的一项里程碑式神经生理学研究中观察到的 SAT 指令下的视觉搜索表现。这个框架通过观察到的神经输入的调制,以及解释不同猴子的 SAT 策略差异所需的门和阈值参数的灵活组合,捕捉到了眼跳搜索性能的关键要素。然而,模型积累器的轨迹偏离了大多数预眼跳运动神经元的动力学。这些发现表明,传统的 SAT 理论解释并不完全描述完成 SAT 的潜在神经调整,为 SAT 期间的决策机制提供了一种新的机制解释,并突出了关于模型和神经积累器身份的问题。新的和值得注意的是,使用门控积累器模型来阐明速度准确性权衡的神经计算机制。虽然经典的随机积累器仅通过调整积累阈值来调整策略,但我们证明,策略调整是通过证据表示的调制和积累器门和阈值的自适应的灵活组合来完成的。结果表明了模型为基础的认知神经科学如何在抽象的认知表现模型和速度准确性权衡的神经机制之间进行转换。

相似文献

4
Neural mechanisms of speed-accuracy tradeoff.速度-准确性权衡的神经机制。
Neuron. 2012 Nov 8;76(3):616-28. doi: 10.1016/j.neuron.2012.08.030.

引用本文的文献

3
Neural mechanisms for executive control of speed-accuracy trade-off.用于速度-准确性权衡的执行控制的神经机制。
Cell Rep. 2023 Nov 28;42(11):113422. doi: 10.1016/j.celrep.2023.113422. Epub 2023 Nov 10.
4
Secondary motor integration as a final arbiter in sensorimotor decision-making.次级运动整合作为感觉运动决策的最终仲裁者。
PLoS Biol. 2023 Jul 17;21(7):e3002200. doi: 10.1371/journal.pbio.3002200. eCollection 2023 Jul.
5
Relating a Spiking Neural Network Model and the Diffusion Model of Decision-Making.关联脉冲神经网络模型与决策扩散模型。
Comput Brain Behav. 2022 Sep;5(3):279-301. doi: 10.1007/s42113-022-00143-4. Epub 2022 Jun 13.
9
Accumulators, Neurons, and Response Time.累加器、神经元和反应时间。
Trends Neurosci. 2019 Dec;42(12):848-860. doi: 10.1016/j.tins.2019.10.001. Epub 2019 Nov 5.

本文引用的文献

1
Approaches to Analysis in Model-based Cognitive Neuroscience.基于模型的认知神经科学中的分析方法。
J Math Psychol. 2017 Feb;76(B):65-79. doi: 10.1016/j.jmp.2016.01.001. Epub 2016 Feb 17.
2
Model-based cognitive neuroscience.基于模型的认知神经科学。
J Math Psychol. 2017 Feb;76(Pt B):59-64. doi: 10.1016/j.jmp.2016.10.010. Epub 2016 Nov 23.
4
Working Memory and Decision-Making in a Frontoparietal Circuit Model.前额顶叶回路模型中的工作记忆与决策制定
J Neurosci. 2017 Dec 13;37(50):12167-12186. doi: 10.1523/JNEUROSCI.0343-17.2017. Epub 2017 Nov 7.
5
RELATING ACCUMULATOR MODEL PARAMETERS AND NEURAL DYNAMICS.关联累加器模型参数与神经动力学
J Math Psychol. 2017 Feb;76(B):156-171. doi: 10.1016/j.jmp.2016.07.001. Epub 2016 Aug 1.
10
Time in Cortical Circuits.在皮质回路中的时间
J Neurosci. 2015 Oct 14;35(41):13912-6. doi: 10.1523/JNEUROSCI.2654-15.2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验