Suppr超能文献

成年斑马鱼 Gpc4(knypek)突变体的颅面骨骼缺陷。

Craniofacial skeletal defects of adult zebrafish Glypican 4 (knypek) mutants.

机构信息

Department of Biological Sciences, DePaul University, Chicago, Illinois 60614, USA.

出版信息

Dev Dyn. 2009 Oct;238(10):2550-63. doi: 10.1002/dvdy.22086.

Abstract

The heparan sulfate proteoglycan Glypican 4 (Gpc4) is part of the Wnt/planar cell polarity pathway, which is required for convergence and extension during zebrafish gastrulation. To observe Glypican 4-deficient phenotypes at later stages, we rescued gpc4(-/-) (knypek) homozygotes and raised them for more than one year. Adult mutants showed diverse cranial malformations of both dermal and endochondral bones, ranging from shortening of the rostral-most skull to loss of the symplectic. Additionally, the adult palatoquadrate cartilage was disorganized, with abnormal chondrocyte orientation. To understand how the palatoquadrate cartilage normally develops, we examined a juvenile series of wild type and mutant specimens. This identified two novel domains of elongated chondrocytes in the larval palatoquadrate, which normally form prior to endochondral ossification. In contrast, gpc4(-/-) larvae never form these domains, suggesting a failure of chondrocyte orientation, though not differentiation. Our findings implicate Gpc4 in the regulation of zebrafish cartilage and bone morphogenesis.

摘要

硫酸乙酰肝素蛋白聚糖 4 (Glypican 4, Gpc4) 是 Wnt/平面细胞极性途径的一部分,该途径在斑马鱼原肠胚形成过程中的会聚延伸中起作用。为了在后期观察到 Gpc4 缺失表型,我们拯救了 gpc4(-/-) (knypek) 纯合子,并将其饲养了一年以上。成年突变体表现出多种颅面畸形,包括最前端颅骨缩短到联会缺失。此外,成年腭方软骨排列紊乱,软骨细胞方向异常。为了了解腭方软骨的正常发育情况,我们检查了一系列野生型和突变型幼体标本。这鉴定出了幼体腭方软骨中两个拉长的软骨细胞新区域,这些区域通常在软骨内骨化之前形成。相比之下,gpc4(-/-) 幼虫从未形成这些区域,这表明软骨细胞方向发生了故障,但没有分化。我们的发现表明 Gpc4 参与了斑马鱼软骨和骨骼形态发生的调控。

相似文献

1
Craniofacial skeletal defects of adult zebrafish Glypican 4 (knypek) mutants.
Dev Dyn. 2009 Oct;238(10):2550-63. doi: 10.1002/dvdy.22086.
2
A role of glypican4 and wnt5b in chondrocyte stacking underlying craniofacial cartilage morphogenesis.
Mech Dev. 2015 Nov;138 Pt 3:279-90. doi: 10.1016/j.mod.2015.10.001. Epub 2015 Oct 14.
4
Glypican 4 regulates planar cell polarity of endoderm cells by controlling the localization of Cadherin 2.
Development. 2021 Jul 15;148(14). doi: 10.1242/dev.199421. Epub 2021 Jul 12.
5
Distinct requirements of wls, wnt9a, wnt5b and gpc4 in regulating chondrocyte maturation and timing of endochondral ossification.
Dev Biol. 2017 Jan 15;421(2):219-232. doi: 10.1016/j.ydbio.2016.11.016. Epub 2016 Nov 29.
8
Kinesin-1 promotes chondrocyte maintenance during skeletal morphogenesis.
PLoS Genet. 2017 Jul 17;13(7):e1006918. doi: 10.1371/journal.pgen.1006918. eCollection 2017 Jul.

引用本文的文献

1
Zebrafish, an Animal Model for Development and New Insights in Bone Formation.
Zebrafish. 2023 Feb;20(1):1-9. doi: 10.1089/zeb.2022.0042.
2
Zebrafish endochondral growth zones as they relate to human bone size, shape and disease.
Front Endocrinol (Lausanne). 2022 Dec 6;13:1060187. doi: 10.3389/fendo.2022.1060187. eCollection 2022.
3
Hedgehog pathway modulation by glypican 3-conjugated heparan sulfate.
J Cell Sci. 2022 Mar 15;135(6). doi: 10.1242/jcs.259297. Epub 2022 Mar 17.
4
Orofacial Cleft and Mandibular Prognathism-Human Genetics and Animal Models.
Int J Mol Sci. 2022 Jan 16;23(2):953. doi: 10.3390/ijms23020953.
6
Glypican 4 mediates Wnt transport between germ layers via signaling filopodia.
J Cell Biol. 2021 Dec 6;220(12). doi: 10.1083/jcb.202009082. Epub 2021 Sep 30.
7
Endochondral growth zone pattern and activity in the zebrafish pharyngeal skeleton.
Dev Dyn. 2021 Jan;250(1):74-87. doi: 10.1002/dvdy.241. Epub 2020 Sep 11.
8
Zebrafish models of skeletal dysplasia induced by cholesterol biosynthesis deficiency.
Dis Model Mech. 2020 Jun 24;13(6):dmm042549. doi: 10.1242/dmm.042549.
9
Deficiency in the endocytic adaptor proteins PHETA1/2 impairs renal and craniofacial development.
Dis Model Mech. 2020 May 26;13(5):dmm041913. doi: 10.1242/dmm.041913.
10
Pathogenic Variants in GPC4 Cause Keipert Syndrome.
Am J Hum Genet. 2019 May 2;104(5):914-924. doi: 10.1016/j.ajhg.2019.02.026. Epub 2019 Apr 11.

本文引用的文献

1
Development of the cranium and paired fins in the zebrafish Danio rerio (Ostariophysi, Cyprinidae).
J Morphol. 1996 Aug;229(2):121-160. doi: 10.1002/(SICI)1097-4687(199608)229:2<121::AID-JMOR1>3.0.CO;2-4.
2
Regulation of zebrafish skeletogenesis by ext2/dackel and papst1/pinscher.
PLoS Genet. 2008 Jul 25;4(7):e1000136. doi: 10.1371/journal.pgen.1000136.
4
The role of the perichondrium in fetal bone development.
Ann N Y Acad Sci. 2007 Nov;1116:59-64. doi: 10.1196/annals.1402.059.
5
Pelvic skeleton reduction and Pitx1 expression in threespine stickleback populations.
Novartis Found Symp. 2007;284:225-39; discussion 239-44. doi: 10.1002/9780470319390.ch15.
6
A two-color acid-free cartilage and bone stain for zebrafish larvae.
Biotech Histochem. 2007 Feb;82(1):23-8. doi: 10.1080/10520290701333558.
7
Fgf8 haploinsufficiency results in distinct craniofacial defects in adult zebrafish.
Dev Biol. 2007 Jun 15;306(2):505-15. doi: 10.1016/j.ydbio.2007.03.025. Epub 2007 Mar 24.
8
Morphing the hyomandibular skeleton in development and evolution.
J Exp Zool B Mol Dev Evol. 2007 Sep 15;308(5):609-24. doi: 10.1002/jez.b.21155.
10
Glypican LON-2 is a conserved negative regulator of BMP-like signaling in Caenorhabditis elegans.
Curr Biol. 2007 Jan 23;17(2):159-64. doi: 10.1016/j.cub.2006.11.065.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验